Previous |  Up |  Next

Article

Keywords:
perturbed Navier-Stokes equations; interior regularity; partial regularity
Summary:
In this paper we establish interior regularity for weak solutions and partial regularity for suitable weak solutions of the perturbed Navier-Stokes system, which can be regarded as generalizations of the results in L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure. Appl. Math. 35 (1982), 771–831, and S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscr. Math. 69 (1990), 237–254.
References:
[1] Batchelor, G. K.: An Introduction to Fluid Dynamics. Cambridge University Press Cambridge (1967). MR 1744638 | Zbl 0152.44402
[2] Bae, H.-O., Choe, H. J.: A regularity criterion for the Navier-Stokes equations. Commun. Partial. Differ. Equations 32 (2007), 1173-1187. DOI 10.1080/03605300701257500 | MR 2354489 | Zbl 1220.35111
[3] Veiga, H. Beirao da: On the smoothness of a class of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 2 (2000), 315-323. DOI 10.1007/PL00000955 | MR 1814220
[4] Veiga, H. Beirao da: A new regularity class for the Navier-Stokes equations in $\Bbb R^n$. Chin. Ann. Math., Ser. B 16 (1995), 407-412. MR 1380578
[5] Veiga, H. Beirao da: A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 2 (2000), 99-106. DOI 10.1007/PL00000949 | MR 1765772
[6] Berselli, L. C., Galdi, G. P.: Regularity criteria involving the pressure for the weak solutions of the Navier-Stokes equations. Proc. Am. Math. Soc. 130 (2002), 3585-3595. DOI 10.1090/S0002-9939-02-06697-2 | MR 1920038
[7] Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35 (1982), 771-831. DOI 10.1002/cpa.3160350604 | MR 0673830 | Zbl 0509.35067
[8] Cao, C., Titi, E.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57 (2008), 2643-2661. DOI 10.1512/iumj.2008.57.3719 | MR 2482994 | Zbl 1159.35053
[9] Chae, D., Choe, H.-J.: Regularity of solutions to the Navier-Stokes equation. Electron. J. Differ. Equ. 5 (1999), 1-7. MR 1673067 | Zbl 0923.35117
[10] Chae, D., Lee, J.: Regularity criterion in terms of pressure for the Navier-Stokes equations. Nonlinear Anal., Theory Methods Appl. 46 (2001), 727-735. DOI 10.1016/S0362-546X(00)00163-2 | MR 1857154 | Zbl 1007.35064
[11] Chester, W.: A general theory for the motion of a body through a fluid at low Reynolds number. Proc. R. Soc. Lond., Ser. A 430 (1990), 89-104. MR 1068486 | Zbl 0703.76026
[12] Chen, Z., Miyakawa, T.: Decay properties of weak solutions to a perturbed Navier-Stokes system in $\Bbb{R}^n$. Adv. Math. Sci. Appl. 7 (1997), 741-770. MR 1476275
[13] Farwig, R., Komo, C.: Regularity of weak solutions to the Navier-Stokes equations in exterior domains. NoDEA, Nonlinear Differ. Equ. Appl. 17 (2010), 303-321. DOI 10.1007/s00030-010-0055-4 | MR 2652230 | Zbl 1189.76115
[14] Farwig, R., Kozono, H., Sohr, H.: Local in time regularity properties of the Navier-Stokes equations. Indiana Univ. Math. J. 56 (2007), 2111-2132. DOI 10.1512/iumj.2007.56.3098 | MR 2359725 | Zbl 1175.35100
[15] Han, P.: Regularity of weak solutions to 3D incompressible Navier-Stokes equations. J. Evol. Equ. 10 (2010), 195-204. DOI 10.1007/s00028-009-0045-3 | MR 2602932 | Zbl 1239.35110
[16] He, C.: Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electron J. Differ. Equ. 29 (2002), 1-13. MR 1907705 | Zbl 0993.35072
[17] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 150 (1999), 307-348. DOI 10.1007/s002050050190 | MR 1741259 | Zbl 0949.35106
[18] Iskauriaza, L., Seregin, G., Shverak, V.: $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk. 58 (2003), 3-44 Russian; translation in Russ. Math. Surv. 58 (2003), 211-250. MR 1992563
[19] Ladyzhenskaya, O., Seregin, G. A.: On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1 (1999), 356-387. DOI 10.1007/s000210050015 | MR 1738171 | Zbl 0954.35129
[20] Lin, F.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Commun. Pure Appl. Math. 51 (1998), 241-257. DOI 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A | MR 1488514 | Zbl 0958.35102
[21] Masuda, K.: Weak solutions of the Navier-Stokes equations. Tôhoku Math. J., II. Ser. 36 (1984), 623-646. DOI 10.2748/tmj/1178228767 | MR 0767409
[22] Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Quaderni di Matematica, Vol. 10: Topics in Mathematical Fluid Mechanics G. P. Galdi, R. Rannacher (2003), 168-183 \MR 20517774. MR 2051774
[23] Neustupa, J., Penel, P.: Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component. Applied Nonlinear Anal. A. Sequeira et al. Kluwer Academic/Plenum Publishers New York (1999), 391-402. MR 1727461 | Zbl 0953.35113
[24] Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math. 49 (2004), 483-493. DOI 10.1023/B:APOM.0000048124.64244.7e | MR 2086090 | Zbl 1099.35101
[25] Scheffer, V.: Partial regularity of solutions to the Navier-Stokes equations. Pac. J. Math. 66 (1976), 535-552. DOI 10.2140/pjm.1976.66.535 | MR 0454426 | Zbl 0325.35064
[26] Seregin, G.: Navier-Stokes equations: almost $L_{3,\infty}$-case. J. Math. Fluid Mech. 9 (2007), 34-43. DOI 10.1007/s00021-005-0190-6 | MR 2305824 | Zbl 1128.35085
[27] Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9 (1962), 187-195. DOI 10.1007/BF00253344 | MR 0136885 | Zbl 0106.18302
[28] Solonnikov, V. A.: Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations. Am. Math. Soc., Transl., II. Sér. 75 (1968), 1-116. Zbl 0187.03402
[29] Struwe, M.: On partial regularity results for the Navier-Stokes equations. Commun. Pure Appl. Math. 41 (1988), 437-458. DOI 10.1002/cpa.3160410404 | MR 0933230 | Zbl 0632.76034
[30] Takahashi, S.: On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscr. Math. 69 (1990), 237-254. DOI 10.1007/BF02567922 | MR 1078355 | Zbl 0718.35022
[31] Zhou, Y.: Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math. Ann. 328 (2004), 173-192. DOI 10.1007/s00208-003-0478-x | MR 2030374 | Zbl 1054.35062
[32] Zhou, Y.: A new regularity criterion for weak solutions to the Navier-Stokes equations. J. Math. Pures Appl., IX. Sér. 84 (2005), 1496-1514. DOI 10.1016/j.matpur.2005.07.003 | MR 2181458 | Zbl 1092.35081
Partner of
EuDML logo