[1] Batchelor, G. K.:
An Introduction to Fluid Dynamics. Cambridge University Press Cambridge (1967).
MR 1744638 |
Zbl 0152.44402
[3] Veiga, H. Beirao da:
On the smoothness of a class of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 2 (2000), 315-323.
DOI 10.1007/PL00000955 |
MR 1814220
[4] Veiga, H. Beirao da:
A new regularity class for the Navier-Stokes equations in $\Bbb R^n$. Chin. Ann. Math., Ser. B 16 (1995), 407-412.
MR 1380578
[5] Veiga, H. Beirao da:
A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 2 (2000), 99-106.
DOI 10.1007/PL00000949 |
MR 1765772
[6] Berselli, L. C., Galdi, G. P.:
Regularity criteria involving the pressure for the weak solutions of the Navier-Stokes equations. Proc. Am. Math. Soc. 130 (2002), 3585-3595.
DOI 10.1090/S0002-9939-02-06697-2 |
MR 1920038
[9] Chae, D., Choe, H.-J.:
Regularity of solutions to the Navier-Stokes equation. Electron. J. Differ. Equ. 5 (1999), 1-7.
MR 1673067 |
Zbl 0923.35117
[11] Chester, W.:
A general theory for the motion of a body through a fluid at low Reynolds number. Proc. R. Soc. Lond., Ser. A 430 (1990), 89-104.
MR 1068486 |
Zbl 0703.76026
[12] Chen, Z., Miyakawa, T.:
Decay properties of weak solutions to a perturbed Navier-Stokes system in $\Bbb{R}^n$. Adv. Math. Sci. Appl. 7 (1997), 741-770.
MR 1476275
[16] He, C.:
Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electron J. Differ. Equ. 29 (2002), 1-13.
MR 1907705 |
Zbl 0993.35072
[18] Iskauriaza, L., Seregin, G., Shverak, V.:
$L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk. 58 (2003), 3-44 Russian; translation in Russ. Math. Surv. 58 (2003), 211-250.
MR 1992563
[22] Neustupa, J., Novotný, A., Penel, P.:
An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Quaderni di Matematica, Vol. 10: Topics in Mathematical Fluid Mechanics G. P. Galdi, R. Rannacher (2003), 168-183 \MR 20517774.
MR 2051774
[23] Neustupa, J., Penel, P.:
Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component. Applied Nonlinear Anal. A. Sequeira et al. Kluwer Academic/Plenum Publishers New York (1999), 391-402.
MR 1727461 |
Zbl 0953.35113
[28] Solonnikov, V. A.:
Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations. Am. Math. Soc., Transl., II. Sér. 75 (1968), 1-116.
Zbl 0187.03402