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THE INVERTIBILITY OF THE ISOPARAMETRIC MAPPINGS

FOR TRIANGULAR QUADRATIC LAGRANGE

FINITE ELEMENTS*

Josef Dalík, Brno

(Received September 23, 2010)

Abstract. A reference triangular quadratic Lagrange finite element consists of a right
triangle K̂ with unit legs S1, S2, a local space L̂ of quadratic polynomials on K̂ and of
parameters relating the values in the vertices and midpoints of sides of K̂ to every function
from L̂. Any isoparametric triangular quadratic Lagrange finite element is determined
by an invertible isoparametric mapping Fh = (F1, F2) ∈ L̂ × L̂. We explicitly describe
such invertible isoparametric mappings Fh for which the images Fh(S1), Fh(S2) of the
segments S1, S2 are segments, too. In this way we extend the well-known result going
back to W.B. Jordan, 1970, characterizing those invertible isoparametric mappings whose
restrictions to the segments S1 and S2 are linear.

Keywords: isoparametric triangular quadratic Lagrange finite element, invertible isopara-
metric mapping

MSC 2010 : 65N30, 65N50

1. Introduction

In this section, we define triangular isoparametric quadratic Lagrange finite ele-

ments, motivate our main result and explain it. We define

K̂ = {[ξ, η] : 0 6 ξ 6 1 and 0 6 η 6 1 − ξ},

â1 = [0, 1], â2 = [0, 1/2], â3 = o ≡ [0, 0], â4 = [1/2, 0], â5 = [1, 0], â6 = [1/2, 1/2],

S1 = â1â3, S2 = â3â5, S3 = â5â1 and denote by int(K̂) the interior of K̂.

*This outcome has been achieved with the financial support of the Ministry of Education,
Youth and Sports of the Czech Republic, project No. 1M0579, within activities of the
CIDEAS research centre.
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A reference triangular quadratic Lagrange finite element K̂ consists of
a) the right triangle with unit legs K̂,

b) the local space L̂ of restrictions of polynomials of degree two or less to the
triangle K̂,

c) the “set of parameters” relating the values p̂(âi) for i = 1, . . . , 6 to each p̂ ∈ L̂.
(These parameters determine p̂ uniquely.)

For arbitrary points a1, . . . , a6 in R
2, we put h = max(|a1a3|, |a3a5|, |a5a1|) and

define the isoparametric mapping Fh = (F1, F2) ∈ L̂ × L̂ by

Fh(âi) = ai for i = 1, . . . , 6.

If Fh is invertible, then we denote by Gh the inverse of Fh, see Fig. 1.
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η
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1
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â6

â1
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Kh
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Figure 1. The mappings Fh and Gh.

An isoparametric triangular quadratic Lagrange finite element Kh is determined

by an invertible isoparametric mapping Fh. It consists of

(a) the curved triangle Kh = Fh(K̂),

(b) the local space Lh of functions

ph(x, y) = p̂(Gh(x, y)) for all p̂ ∈ L̂,

(c) the “set of parameters” relating the values ph(a1), . . . , ph(a6) to any ph ∈ Lh.

(These parameters determine ph in Lh uniquely.)

Most often, finite elements of this type are used for an accurate approximation

of piecewise smooth curved boundaries of domains of boundary-value problems for

partial differential equations. For example, if we approximate the weak solution u of

the problem

−∆u = f in Ω ⊆ R
2, u = 0 on ∂Ω

446



with piecewise smooth boundary ∂Ω by the linear finite-element approximation uh

related to a triangulation Th with discretization step h, then the order of the H1-

norm of the error u−uh is O(h). The use of quadratic finite elements on the triangles

from Th increases this order to O(h3/2). To obtain an error of a higher order, ∂Ω has

to be approximated more exactly. The triangular isoparametric quadratic Lagrange

finite element is a standard tool for this purpose and its use leads to the H1-norm

of error of the optimal order O(h2). In this application, two sides of the curved

triangle Kh remain straight; we denote them by a1a3 and a3a5 as in Fig. 2.

∂Ω

ν

µ

a1

a2

a3

a4

a5

Figure 2. Illustration of the Jordan result.

The famous result by Jordan [3], see also Strang, Fix [10], Mitchell, Wait [9],

and Křížek, Neittaanmäki [6], says that, under the assumptions a2 = (a1 + a3)/2,

a4 = (a3+a5)/2, the isoparametric mapping Fh is invertible if and only if the point a
6

is situated between the rays µ and ν of the points x = (a2 + a4)/2 + v(a5 − a3) with

v > 0 and x = (a2+a4)/2+u(a1−a3) with u > 0, respectively, see Fig. 2. It is natural

to ask what happens when the points a2, a4 change their positions. This question

is especially interesting in the case a2 ∈ a1a3, a4 ∈ a3a5 because of simplicity of its

implementation.

In this paper, we work with points a1, . . . , a5 such that a1, a3, a5 do not appear

on one straight line exclusively. We describe the admissible set

Ad = Ad(a1, . . . , a5) ≡ {a6 : the mapping Fh is invertible}

in the case a2 ∈ a1a3, a4 ∈ a3a5

In Section 2, we characterize injective restrictions of isoparametric mappings to

the sides S1, S2, S3 and injective isoparametric mappings (on K̂) by means of their

Jacobians. In Section 3, we study the invertibility of Fh under the assumption that

there exist coordinates u, v, U , V such that a2 = a3+u(a1−a3), a4 = a3+v(a5−a3),
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and a6 = a3 + U(a1 − a3) + V (a5 − a3). According to Jordan [3], Ad is equal to the

Jordan admissible set

(1.1) AdJ = {a6 : 1/4 6 U, 1/4 6 V }

in the case u = 1/2 = v. In Section 4, we prove that the admissible set is non-empty

if and only if 1/4 6 u 6 3/4, 1/4 6 v 6 3/4 and describe it in the following explicit

way. If 1 < u + v and either u = 3/4 or v = 3/4, then

Ad = {a6 ∈ AdJ : U(4v − 1) + V (4u − 1) > 3(u + v) − 5/2}.

If 1 < u + v, u < 3/4 and v < 3/4, then Ad = AdJ − T , where T is the curved
triangle bounded by the rays µ, ν and by the negatively oriented arc tU tV of the

ellipse with centre s = [u/2 + 1/8, v/2 + 1/8] touching the line µ, ν at the point

tU = [1/4, (12u+8v−9)/4/(4u−1)], tV = [(8u+12v−9)/4/(4v−1), 1/4], respectively.

Fig. 3 illustrates the admissible set in the case u = 2/3, v = 1/2.

Ad

tV

tU

ν

µ

T

s

a1

a2

a3

a4

a5

Figure 3. The admissible set.

Further, in the case 1/2 < u + v 6 1 we have

Ad = AdJ

and, finally, if u = 1/4 = v, then

Ad = AdJ ∪ {a6 : U < 1/4, V < 1/4, (4U − 1)(4V − 1) > 1}.

Although the isoparametric finite elements are widely used and also analysed, see

Section 4.3 from Ciarlet [2] for example, our knowledge of the invertible isopara-

metric mappings is very poor. These mappings have been characterized for bilinear
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finite elements in Strang-Fix [10] and for pyramidal and prismatic finite elements

in Knabner, Summ [5]. In Knabner, Korotov, Summ [4], an algorithm checking the

positivity of the Jacobian of the isoparametric mapping for trilinear finite elements

on hexahedra has been presented. Inverse isoparametric mappings have been studied

in Yuan, Huang, Yang, Pian [11] and Lautersztajn-S, Samuelsson [7] by the tools of

differential geometry and continuously invertible mappings, in Meisters, Olech [8]

by topological methods. In Barrett [1], some general necessary conditions for the

invertibility of isoparametric mappings can be found. Results of this kind should

give the developers of programming systems based on the finite element methods

criteria guaranteeing correct implementations of the isoparametric finite elements.

2. Abstract invertible isoparametric mappings

We characterize invertible pairs of quadratic polynomials on the interval 〈0, 1〉 in
Lemma 1 and discuss an important special case in Corollary 1. In Lemma 2 we prove

that an isoparametric mapping Fh is invertible (on K̂) if and only if the Jacobian

of Fh is non-zero in int(K̂) and the restriction of Fh to each of the sides S1, S2, S3

is an injection.

Lemma 1. For arbitrary points a, b, c ∈ R
2, the mapping F = (F1, F2) : 〈0, 1〉 →

R
2 such that F1, F2 are quadratic polynomials satisfying

F(0) = a, F(1/2) = b, F(1) = c

is an injection if and only if a 6= c and

(2.1) b = a + u(c − a) for some u ∈ R =⇒ 1/4 6 u 6 3/4.

R em a r k. The condition (2.1) says that F is an injection if and only if the point b
is situated anywhere in R

2 except the two thick open rays illustrated in Fig. 4.

a c

u < 1/4 u > 3/4

Figure 4. Graphical illustration of Lemma 1.

P r o o f. Of course, we have

F(t) = a + 2(b − a)t + (a − 2b + c)(2t2 − t)
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for t ∈ 〈0, 1〉. This mapping is not an injection if and only if

∃ t1, t2 : 0 6 t1 < t2 6 1 and

F(t1) −F(t2) = (t1 − t2)[2(b − a) + (a − 2b + c)(2(t1 + t2) − 1)] = 0.

Putting t∗ = (t1 + t2)/2, this condition is equivalent to

∃ t∗ ∈ (0, 1): (4 − 8t∗)b = (3 − 4t∗)a + (1 − 4t∗)c.

Hence, F is an injection if and only if

(2.2) ∀ t∗ ∈ (0, 1): (4 − 8t∗)b 6= (3 − 4t∗)a + (1 − 4t∗)c.

Setting t∗ = 1/2, we obtain a 6= c. In the case t∗ 6= 1/2, (2.2) gives us

∀ t∗ ∈ (0, 1/2) ∪ (1/2, 1): b 6= a + u(c − a) for u = (1 − 4t∗)/(4 − 8t∗).

It is easy to see that t∗ ∈ (0, 1/2) ⇐⇒ u ∈ (−∞, 1/4) and t∗ ∈ (1/2, 1) ⇐⇒ u ∈
(3/4,∞), so that (2.1) follows immediately. �

Corollary 1. Let f0, f1, f2 be real numbers and P a quadratic polynomial on the

interval 〈0, 1〉 such that P (0) = f0, P (1/2) = f1, P (1) = f2. Then the following

statements a), b) are true.

a) P is an injection if and only if f0 6= f2 and

1

4
min(3f0 + f2, f0 + 3f2) 6 f1 6

1

4
max(3f0 + f2, f0 + 3f2).

b) P attains its absolute minimum [maximum] on 〈0, 1〉 in a unique pointm ∈ (0, 1)

if and only if

f1 <
1

4
min(3f0 + f2, f0 + 3f2)

[

f1 >
1

4
max(3f0 + f2, f0 + 3f2)

]

.

Then

P (m) = f1 −
(f0 − f2)

2

8(f0 − 2f1 + f2)
.

P r o o f. a) In the case a = [0, f0], b = [0, f1], c = [0, f2], Lemma 1 says that P is

an injection if and only if f0 6= f2 and

f1 = f0 + u(f2 − f0) for some u : 1/4 6 u 6 3/4.

450



This is equivalent to the fact that f1 is situated between f0+(f2−f0)/4 = (3f0+f2)/4

and f0 + 3(f2 − f0)/4 = (f0 + 3f2)/4.

b) It follows by a) that P attains a proper local minimum [maximum] in a point

m ∈ (0, 1) if and only if

f1 <
1

4
min(f0 + 3f2, 3f0 + f2)

[

f1 >
1

4
max(f0 + 3f2, 3f0 + f2)

]

.

As P (t) = f0 + 2(f1 − f0)t + (f0 − 2f1 + f2)(2t2 − t) and P ′(t) = −3f0 + 4f1 − f2 +

4t(f0 − 2f1 + f2), we have P ′(m) = 0 if and only if

m =
1

4
+

f0 − f1

2(f0 − 2f1 + f2)
.

Then

P (m) = f1 −
(f2 − f0)

2

8(f0 − 2f1 + f2)
.

�

We denote by J = J(ξ, η) the Jacobian of the isoparametric mapping Fh.

Lemma 2. Let us consider such points a1, . . . , a6 that the restriction of the

isoparametric mapping Fh to each of the segments S1, S2, S3 is an injection. Then

Fh is invertible if and only if

J(ξ, η) 6= 0 for all [ξ, η] ∈ int(K̂).

P r o o f. Let us put Fh = (F1, F2) and

M1(ξ, η) =







∂F1

∂ξ

∂F1

∂η
∂F2

∂ξ

∂F2

∂η






(ξ, η), M2 =







1

2

∂2F1

∂ξ2

∂2F1

∂ξ∂η

1

2

∂2F1

∂η2

1

2

∂2F2

∂ξ2

∂2F2

∂ξ∂η

1

2

∂2F2

∂η2






.

We first prove the following useful property of quadratic polynomials.

a) If a, b are different points from K̂, then

Fh(b) −Fh(a) = M1(c)(b − a)

for c = 1

2
(a + b): due to the Taylor Theorem, we have

(2.3) Fh(b) = Fh(a) + M1(a)(b − a) + M2





(b1 − a1)
2

(b1 − a1)(b2 − a2)

(b2 − a2)
2




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and

(2.4) Fh(a) = Fh(b) + M1(b)(a − b) + M2





(a1 − b1)
2

(a1 − b1)(a2 − b2)

(a2 − b2)
2



 .

If we subtract (2.4) from (2.3), divide the difference by two and use the facts that

the entries of M1 are linear and those of M2 are constant, we get a).

Let there exist different points a, b in K̂ such that Fh(a) = Fh(b). Due to our

assumptions, a, b do not belong to the same side of K̂. But then c = 1

2
(a+b) ∈ int(K̂)

and M1(c)(b − a) is the zero point o by a). Hence, J(c) = det(M1(c)) = 0.

Conversely, let Fh be invertible. For every point c ∈ int(K̂) and for arbitrary

different a, b ∈ K̂ such that c = 1

2
(a+b), we have ab ⊆ K̂. Then o 6= Fh(b)−Fh(a) =

M1(c)(b − a) by a) and we conclude that J(c) 6= 0. �

The inverse implication of Lemma 2 is a consequence of the abstract Theorem 1

from [8]. Lemma 2 and the continuity of the Jacobian J give us the following state-

ment.

Corollary 2. For arbitrary points a1, . . . , a6, the isoparametric mapping Fh is

invertible if and only if the restriction of Fh to each of the segments S1, S2, S3 is an

injection and J is positive on int(K̂) or J is negative on int(K̂).

3. Special invertible isoparametric mappings

In this section, we consider points a1, . . . , a6 such that a2 ∈ a1a3 and a4 ∈ a3a5.

We say that u, v, U , V are coordinates whenever

a2 = a3 + u(a1 − a3), a4 = a3 + v(a5 − a3),(3.1)

a6 = a3 + U(a1 − a3) + V (a5 − a3),

and identify the point a6 with the ordered pair [U, V ]. For arbitrary points a, b, c,

we put

D(abc) =

∣

∣

∣

∣

a1 − c1 a2 − c2

b1 − c1 b2 − c2

∣

∣

∣

∣

.

We prove that J = D(a1a3a5)J̃ and express the coefficients of the polyno-

mial J̃(ξ, η) in terms of the coordinates in Proposition 1. Led by Corollary 2, we

characterize those coordinates for which J̃ is negative in int(K̂) in Lemma 3. We

find necessary and sufficient conditions guaranteeing non-negativity of J̃ on ∂K̂ in

Lemma 7 and prove that, under these conditions, J̃ is positive in int(K̂) in Lemma 8.
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The following direct consequences of Lemma 1 give us necessary conditions for the

admissible set to be non-empty.

Corollary 3. Let Fh be an isoparametric mapping related to the points a
1, . . . , a6

with coordinates u, v, U , V . Then

a) Fh|S1
is an injection⇐⇒ 1/4 6 u 6 3/4.

b) Fh|S2
is an injection⇐⇒ 1/4 6 v 6 3/4.

c) Fh|S3
is an injection⇐⇒ [U + V = 1 =⇒ 1/4 6 U 6 3/4].

Proposition 1. Let Fh be an isoparametric mapping related to the points

a1, . . . , a6 with coordinates u, v, U , V .

Then J(ξ, η) = D(a1a3a5)J̃(ξ, η), J̃(ξ, η) = a + bξ + cη + dξ2 + eξη + fη2 and

a = (4u − 1)(4v − 1),

b = 4[(4v − 1)(U − u) − (4u − 1)(2v − 1)],

c = 4[(4u − 1)(V − v) − (4v − 1)(2u − 1)],

d = 16(u − U)(2v − 1),

e = 16(2u − 1)(2v − 1),

f = 16(v − V )(2u − 1).

If the ordered triple (a1, a3, a5) is oriented positively, then J(ξ, η) and J̃(ξ, η) have

the same sign.

P r o o f. It is easy to see that the polynomials

L̂1(ξ, η) = η(2η − 1),

L̂2(ξ, η) = 4η(1 − ξ − η),

L̂3(ξ, η) = (1 − ξ − η)(1 − 2ξ − 2η),

L̂4(ξ, η) = 4ξ(1 − ξ − η),

L̂5(ξ, η) = ξ(2ξ − 1),

L̂6(ξ, η) = 4ξη

create the Lagrange basis in L̂ related to the points â1, . . . , â6. If we put Fh(ξ, η) =

L̂1(ξ, η)a1 + . . . + L̂6(ξ, η)a6, express a2, a4, a6 by (3.1), compute and simplify the

Jacobian, then we obtain J(ξ, η) = D(a1a3a5)J̃(ξ, η) as well as the above form of J̃ .

The last statement is well known. �
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We have characterized the injectivity of Fh|Si
for i = 1, 2, 3 in Corollary 3. Then,

due to Corollary 2, Fh is invertible whenever J̃ > 0 in int(K̂) or J̃ < 0 in int(K̂).

We investigate the second case in Lemma 3.

Definition. For arbitrary coordinates u, v, U , V , we put J0 = J̃(â1), J1 = J̃(â2),

J2 = J̃(â3).

Due to Proposition 1, we have

J0 = (3 − 4u)(4V − 1),

J1 = 2v + 2V − 1,

J2 = (4u − 1)(4v − 1).

Lemma 3. Let the points a1, . . . , a6 with coordinates u, v, U , V satisfy 1/4 6

u 6 3/4, 1/4 6 v 6 3/4. Then J̃ < 0 in int(K̂) if and only if

u = 1/4 = v, U < 1/4, V < 1/4, and (4U − 1)(4V − 1) > 1.

P r o o f. We prove the following statements a)–c).

a) J̃ |S1
6 0 ⇐⇒ [v = 1/4 and V 6 1/4]: Let us assume that

J0 6 0, J1 6 0, J2 6 0.

Then, as u, v ∈ 〈1/4, 3/4〉, J2 6 0 ⇐⇒ J2 = 0 ⇐⇒ u = 1/4 or v = 1/4. Further,

J̃ 6 0 on S1 if and only if J̃ has not an absolute maximum at any unique point inside

of S1. This is equivalent to

J1 6
1

4
max(3J0 + J2, J0 + 3J2) =

1

4
J0

due to Corollary 1 b). By evaluating J1 and J0, we obtain

0 6 1 + 4u − 8v + 4V − 16uV.

If we admit v > 1/4, then u = 1/4 and this inequality simplifies to 0 6 2 − 8v.

Hence, v = 1/4 and, in this case, J1 6 0 means V 6 1/4.

b) J̃ |S2
6 0 ⇐⇒ [u = 1/4 and U 6 1/4]: This statement can be proved in the

same way as a).

The following statement c) characterizes the points a6 = [U, V ] such that J̃ < 0

in int(K̂) under the assumption J̃ |S1∪S2
6 0.

c) Let us assume that u = 1/4 = v, U 6 1/4 and V 6 1/4. Then J̃ < 0 in int(K̂)

if and only if

(4U − 1)(4V − 1) > 1.
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In the case u = 1/4 = v, Proposition 1 gives us

1

2
J̃(ξ, η) = 2ξη

(

1 −
√

(1 − 4U)(1 − 4V )
)

−
(

ξ
√

1 − 4U − η
√

1 − 4V
)2

.

It is easy to see that J̃ < 0 in int(K̂) if and only if 1 −
√

(1 − 4U)(1 − 4V ) < 0 and

this is equivalent to (4U − 1)(4V − 1) > 1. �

Now, let us study the more common case J̃ > 0 in int(K̂).

Lemma 4. Let Fh be an isoparametric mapping related to the points a1, . . . , a6

with coordinates u, v, U , V such that 1/4 6 u 6 3/4 and 1/4 6 v 6 3/4. Then the

following statements a), b) are valid.

a) J̃ |S1
> 0 ⇐⇒ 1/4 6 V .

b) J̃ |S2
> 0 ⇐⇒ 1/4 6 U .

P r o o f. a) Let us assume that J̃ |S1
> 0. Then J0 > 0 and J2 > 0 give us

(3.2) (3 − 4u)(4V − 1) > 0 and (4u − 1)(4v − 1) > 0.

If we assume u < 3/4, then 1/4 6 V due to (3.2). In the case u = 3/4 we have

J0 = 0, J1 = 2v + 2V − 1, J2 = 2(4v − 1).

If, moreover, v = 1/4, then J2 = 0 and

J̃ |S1
> 0 ⇐⇒ J1 > 0 ⇐⇒ 1/4 6 V.

In the case v > 1/4 we have J0 = 0 < J2 and Corollary 1 b) gives us

J̃ |S1
> 0 ⇐⇒ J1 >

1

4
min(3J0 + J2, J0 + 3J2) =

1

4
J2 ⇐⇒ 1

4
6 V.

Conversely, let us assume that 1/4 6 V for some u, v ∈ 〈1/4, 3/4〉. Then J0 > 0,

J2 > 0 and we prove that J̃ |S1
does never attain its absolute minimum at any

unique inner point of S1. Due to Corollary 1 b), it is sufficient to verify the following

implications a1), a2).

a1) J2 6 J0 =⇒ J1 > 1

4
(J0 + 3J2): J2 6 J0 is equivalent to

(3.3) (4u − 1)(4v − 1) 6 (3 − 4u)(4V − 1)

and J1 > 1

4
(J0 + 3J2) is equivalent to

(3.4) (12u − 5)(4v − 1) 6 (4u − 1)(4V − 1).
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If u = 3/4, then v = 1/4 by (3.3), so that (3.4) is equivalent to the valid statement

1/4 6 V . Let us now assume that 1/4 6 u < 3/4. By (3.3), we obtain

(3.5)
(4u − 1)(4v − 1)

3 − 4u
6 4V − 1

and we prove the inequality

(3.6) (12u − 5)(4v − 1) 6
(4u − 1)2(4v − 1)

3 − 4u
.

If 4v − 1 = 0, then (3.6) is true. If 4v − 1 > 0, then (3.6) is equivalent to

(12u − 5)(3 − 4u) − (4u − 1)2 = −(8u − 4)2 6 0.

The statements (3.6) and (3.5) give us (3.4) immediately.

The implication

a2) J0 < J2 =⇒ J1 > 1

4
(3J0 + J2)

can be verified by the same procedure as a1).

The proof of the statement b) is an analogy of the proof of a). �

The use of the following expressions facilitates the study of the sign of J̃ on the

side S3.

Definition. For arbitrary coordinates u, v, U , V , we put

ω(U, V ) = (4u − 1)(4V − 1) + (4v − 1)(4U − 1) − 8(u + v − 1),

̺(U, V ) = ω(U, V ) − 2(3 − 4v)(4U − 1),

σ(U, V ) = ω(U, V ) − 2(3 − 4u)(4V − 1),

F (U, V ) = 4(3 − 4u)(3 − 4v)(4U − 1)(4V − 1) − ω(U, V )2.

After the obvious Lemma 5, the role of the above-defined expressions is apparent

from Lemma 6.

Lemma 5. For arbitrary coordinates u, v, U , V , we have

[̺(U, V ) = 0 and σ(U, V ) = 0] =⇒ F (U, V ) = 0.

Lemma 6. Let Fh be an isoparametric mapping related to the points a1, . . . , a6

with coordinates u, v, U , V . Then J̃ |S3
has an absolute minimum in a unique inner

point m of S3 if and only if

̺(U, V ) < 0 and σ(U, V ) < 0.
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In this case

J̃(m) = − F (U, V )

2[̺(U, V ) + σ(U, V )]
.

P r o o f. Let us put f(η) = J̃(1 − η, η) for η ∈ 〈0, 1〉. As

f(0) = (3 − 4v)(4U − 1),

f(1/2) = 1 − 2(u + v − U − V ),

f(1) = (3 − 4u)(4V − 1)

by Proposition 1, we can see that

f(1/2)− 3

4
f(0) − 1

4
f(1) =

1

4
̺(U, V ),

f(1/2)− 1

4
f(0) − 3

4
f(1) =

1

4
σ(U, V ),

f(0) − 2f(1/2) + f(1) = − 1

4
[̺(U, V ) + σ(U, V )].

These relations and Corollary 1 b) give us Lemma 6. �

Now, we can characterize the non-negativity of J̃ on ∂K̂.

Lemma 7. Let Fh be an isoparametric mapping related to the points a1, . . . , a6

with coordinates u, v, U , V such that 1/4 6 u 6 3/4 and 1/4 6 v 6 3/4. Then

J̃ > 0 on ∂K̂ if and only if 1/4 6 U , 1/4 6 V and

(3.7) [̺(U, V ) < 0 and σ(U, V ) < 0] =⇒ F (U, V ) > 0.

P r o o f. Due to Lemma 4, J̃ |S1∪S2
> 0 if and only if 1/4 6 U and 1/4 6 V . In

this case we have J̃(â5) > 0 and J̃(â1) > 0. Now, J̃ |S3
> 0 if and only if the absolute

minimum of J̃ at a unique inner point of S3 is non-negative whenever it exists. This

condition is equivalent to (3.7) due to Lemma 6. �

Lemma 8. Let the coordinates u, v, U , V of the points a1, . . . , a6 satisfy 1/4 6

u 6 3/4, 1/4 6 v 6 3/4, 1/4 6 U , and 1/4 6 V . Then

J̃ > 0 on ∂K̂ =⇒ J̃ > 0 in int(K̂).

P r o o f. Assume that J̃ > 0 on ∂K̂. We show that J̃ > 0 in int(K̂) directly

or we prove that J̃ attains its global minimum at the points from ∂K̂ only. We

repeatedly use the formulas

∂2J̃

∂ξ2
= 32(u − U)(2v − 1),

∂2J̃

∂η2
= 32(v − V )(2u − 1).
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a) Let ∂2J̃/∂ξ2 > 0. Then 2v − 1 6= 0 and, as

∂J̃

∂ξ
(0, 0) = 4[(4v − 1)(U − u) − (4u − 1)(2v − 1)],

∂J̃

∂ξ
(1, 0) = 4[(3 − 4v)(U − u) − (4U − 1)(2v − 1)],

∂J̃

∂ξ
(0, 1) = 4[(4v − 1)(U − u) − (3 − 4u)(2v − 1)],

2v−1 > 0 gives us u > U and (∂J̃/∂ξ)(0, 0) < 0, (∂J̃/∂ξ)(1, 0) 6 0, (∂J̃/∂ξ)(0, 1) <

0. These inequalities and the linearity of ∂J̃/∂ξ lead to ∂J̃/∂ξ < 0 in int(K̂). Analo-

gously, if 2v−1 < 0, then u < U and we obtain (∂J̃/∂ξ)(0, 0) > 0, (∂J̃/∂ξ)(1, 0) > 0,

(∂J̃/∂ξ)(0, 1) > 0, so that ∂J̃/∂ξ > 0 in int(K̂).

b) Let ∂2J̃/∂η2 > 0. Then 2u − 1 6= 0 and we verify the implications

2u − 1 > 0 =⇒ ∂J̃

∂η
< 0 in int(K̂),

2u − 1 < 0 =⇒ ∂J̃

∂η
> 0 in int(K̂)

by the same arguments as in the case a).

c) If ∂2J̃/∂ξ2 < 0 or ∂2J̃/∂η2 < 0, then it is obvious that J̃ attains the absolute

minimum on K̂ at points from ∂K̂ only.

d) Let ∂2J̃/∂ξ2 = 0 = ∂2J̃/∂η2. With respect to the assumptions, it is sufficient

to consider the following cases i)–iv).

i) If u = 1/2 = v, then J̃ = 1 + (4U − 2)ξ + (4V − 2)η and, as 4U − 2 > −1 and

4V − 2 > −1, we obtain J̃ > 0 in int(K̂).

ii) If u = 1/2 = U , v 6= 1/2, then J̃ = 4v − 1 − 4(2v − 1)ξ + 4(V − v)η, so that

∂J̃/∂ξ = −4(2v − 1) 6= 0.

iii) The case u 6= 1/2, v = 1/2 = V is an analogy of ii).

iv) If u = U 6= 1/2, v = V 6= 1/2, then

J̃ = (4u − 1)(4v − 1) − 4(4u − 1)(2v − 1)ξ

− 4(4v − 1)(2u − 1)η + 16(2u − 1)(2v − 1)ξη

and we obtain ∂J̃/∂ξ = 4(2v− 1)[1− 4u + 4(2u− 1)η]. The value of b(η) = 1− 4u +

4(2u−1)η is 1−4u 6 0 for η = 0 and 4u−3 6 0 for η = 1. As 1−4u < 0 or 4u−3 < 0,

b(η) is negative in int(K̂) and, consequently, ∂J̃/∂ξ is non-zero in int(K̂). �
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4. The admissible set

We repeat that, due to (1.1), Ad(a1, . . . , a5) = AdJ = {a6 : 1/4 6 U, 1/4 6 V }
for all points a1, . . . , a5 with the coordinates u = 1/2 = v. In Theorem 1, we describe

the admissible set for all points a1, . . . , a5 with any given coordinates u, v.

Definition. For arbitrary points a1, . . . , a5 with coordinates u, v, we denote by ϕ

the curve F (U, V ) = 0, by µ, ν, ̺0, σ0 the straight line U = 1/4, V = 1/4, ̺(U, V ) =

0, σ(U, V ) = 0 respectively and we put r = [1/4, 1/4], s = [(4u + 1)/8, (4v + 1)/8].

Theorem 1. For arbitrary points a1, . . . , a5 with coordinates u, v, the admissible

set Ad = Ad(a1, . . . , a5) is non-empty if and only if

(4.1) 1/4 6 u 6 3/4 and 1/4 6 v 6 3/4.

If (4.1) is true, then Ad attains the following forms a)–d).

a) If 1 < u + v and either u = 3/4 or v = 3/4, then

Ad = {a6 ∈ AdJ : U(4v − 1) + V (4u − 1) > 3(u + v) − 5/2}.

b) If 1 < u + v, u < 3/4 and v < 3/4, then the curve ϕ is an ellipse with centre s

touching the straight line µ and ν at the point

tU =
[1

4
,
12u + 8v − 9

4(4u − 1)

]

and tV =
[8u + 12v − 9

4(4v − 1)
,
1

4

]

respectively. If we denote by T the “curved triangle” bounded by the seg-
ments tV r, rtU and by the negatively oriented arc tU tV of ϕ, then

Ad = AdJ − T .

c) If 1/2 < u + v 6 1, then

Ad = AdJ .

d) If u = 1/4 = v, then

Ad = AdJ ∪ {a6 : U < 1/4, V < 1/4, and (4U − 1)(4V − 1) > 1}.
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P r o o f. Let us choose the indexes in such a way that the ordered triple

(a1, a3, a5) is oriented positively. If a6 ∈ Ad(a1, . . . , a5), then the isoparametric

mapping Fh is an injection. We obtain (4.1) by Corollary 3 a), 3 b).

Conversely, let the conditions (4.1) be valid. Then Fh|S1
and Fh|S2

are injections

by Corollary 3 a), 3 b). According to Corollary 2, it remains to describe the set

of points a6 such that Fh|S3
is an injection and either J̃ > 0 in int(K̂) or J̃ < 0

in int(K̂). By Lemma 3, J̃ < 0 concerns the case d) only. Lemma 4 says that

J̃ |S1∪S2
> 0 if and only if a6 ∈ AdJ . Then Fh|S3

is an injection by Corollary 3 c).

For all points a6 ∈ AdJ satisfying (3.7), we have J̃ |∂K̂ > 0 by Lemma 7 and we obtain

J̃ > 0 in int(K̂) by Lemma 8. Then Fh is invertible due to Corollary 2. Hence, we

prove the statements a)–c) whenever we characterize the points a6 from AdJ with

property (3.7).

Proof of a). If u = 3/4 or v = 3/4, then

ω(U, V ) = max{̺(U, V ), σ(U, V )} and F (U, V ) = −ω(U, V )2,

so that

[̺(U, V ) < 0 and σ(U, V ) < 0] =⇒ F (U, V ) < 0.

Hence, implication (3.7) is valid if and only if

̺(U, V ) > 0 or σ(U, V ) > 0

and this is equivalent to ω(U, V ) > 0.

Proof of b). Let us assume that 1 < u + v, u < 3/4 and v < 3/4. We can see that

FUU ≡ ∂2F

∂U2
= −32(4v − 1)2,

FUV ≡ ∂2F

∂U∂V
= 32[2(3− 4u)(3 − 4v) − (4u − 1)(4v − 1)],

FV V ≡ ∂2H

∂V 2
= −32(4u − 1)2

and

FUU FV V − (FUV )2 = 323(3 − 4u)(3 − 4v)(u + v − 1).

It is a matter of routine to show that s is the stationary point of F and

F (s) = 8(3 − 4u)(3 − 4v)(u + v − 1).

As FUU < 0, FUUFV V − (FUV )2 > 0 and F (s) > 0, s is the proper local maximum

of F and the curve ϕ is an ellipse with centre s. Moreover, we can show easily that
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µ, ν is the tangent line of ϕ at the point tU , tV respectively and ̺0 = xtU , σ0 = xtV

for

x =
[1

2
+

(u − v)(u − 1/2)

8uv − 5u − 5v + 3
,
1

2
+

(v − u)(v − 1/2)

8uv − 5u − 5v + 3

]

.

But then x ∈ ϕ due to Lemma 5. As ̺(r) < 0 and σ(r) < 0, the set of points

a6 ∈ AdJ satisfying

̺(U, V ) < 0 and σ(U, V ) < 0

is equal to the quadrilateral xtV rtU . Hence, implication (3.7) is not valid in a point

a6 ∈ AdJ if and only if

a6 ∈ xtV rtU and F (U, V ) < 0.

These are exactly the points from the curved triangle T (see Fig. 5).

Ad

tV

tU

µ

ν

T
r

s

a1

a2

a3

a4

a5

x

σ0

̺0

ϕ

Figure 5. Notation from the proof of b).

Proof of c). If u + v 6 1 and a6 ∈ AdJ , then ω(U, V ) > 0 and we prove implica-

tion (3.7) in the following steps i), ii).

i) If (3 − 4u)(4V − 1) > (3 − 4v)(4U − 1), then the assumption

̺(U, V ) = ω(U, V ) − 2(3 − 4v)(4U − 1) < 0

together with ω(U, V ) > 0 give us

F (U, V ) = 4(3 − 4u)(3 − 4v)(4U − 1)(4V − 1) − ω(U, V )2

> 4(3 − 4u)(3 − 4v)(4U − 1)(4V − 1) − [2(3 − 4v)(4U − 1)]2

= 4(3 − 4v)(4U − 1)[(3 − 4u)(4V − 1) − (3 − 4v)(4U − 1)] > 0.
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ii) If (3 − 4v)(4U − 1) > (3 − 4u)(4V − 1), then we prove

σ(U, V ) < 0 =⇒ F (U, V ) > 0

by means of the same procedure as in i).

Proof of d). Let us assume that u = 1/4 = v. In this case, we have proved that

the mapping Fh is invertible for all points a6 ∈ AdJ in c). Lemma 3 tells us that

J̃ < 0 in int(K̂) for all points a6 such that

U < 1/4, V < 1/4, and (4U − 1)(4V − 1) > 1.

Then J̃ |Si
, i = 1, 2, 3, are injections by Corollary 3 andFh is invertible by Corollary 2.

�
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