[1] Bárta T.: Global existence for a nonlinear model of 1D chemically reacting viscoelastic body. preprint, 2012.
[2] Bulíček M., Málek J., Rajagopal K.R.:
Mathematical results concerning unsteady flows of chemically reacting incompressible fluids. (English summary) Partial differential equations and fluid mechanics, 2653, London Math. Soc. Lecture Note Ser., 364, Cambridge Univ. Press, Cambridge, 2009.
MR 2605756 |
Zbl 1182.35184
[4] Gripenberg G., Londen S.O., Staffans O.:
Volterra integral and functional equations. Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990.
MR 1050319 |
Zbl 1159.45001
[8] Prüss J.:
Evolutionary Integral Equations and Applications. Monographs in Mathematics, 87, Birkhäuser, Basel, 1993.
MR 1238939
[9] Rajagopal K.R., Wineman A.S.:
A note on viscoelastic materials that can age. International Journal of Non-Linear Mechanics 39 (2004), 1547–1554.
DOI 10.1016/j.ijnonlinmec.2003.09.001
[10] Rajagopal K.R., Wineman A.S.:
Applications of viscoelastic clock models in biomechanics. Acta Mechanica 213 (2010), no. 3–4, 255–266.
DOI 10.1007/s00707-009-0262-4
[11] Renardy M., Hrusa W.J., Nohel J.A.:
Mathematical problems in viscoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.
MR 0919738 |
Zbl 0719.73013
[12] Tatar N.-E.:
Long time behavior for a viscoelastic problem with a positive definite kernel. Aust. J. Math. Anal. Appl. 1 (2004), no. 1, Art. 5, 11 pp.
MR 2077662 |
Zbl 1129.74314