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Nonmonotone nonconvolution functions

of positive type and applications

Tomáš Bárta

Abstract. We present two sufficient conditions for nonconvolution kernels to be
of positive type. We apply the results to obtain stability for one-dimensional
models of chemically reacting viscoelastic materials.

Keywords: functions of positive type, nonconvolution integral equation, chemi-
cally reacting viscoelastic fluid

Classification: 42A82, 45A05, 45M05, 76A10

1. Introduction

Recently, models of chemically reacting fluids have been studied by several
authors. See Buĺıček, Málek and Rajagopal [2] for a general existence result and
references therein for other works on this topic. The model studied in [2] is of the
form

(1) div v = 0, vt +div(v ⊗ v) = divS + f −∇p, ct +div(vc) = − div qc,

where v is the velocity of the fluid, c is concentration of a chemical, p pressure, S
the stress tensor, qc heat flux and f an external force. A model for viscoelastic
materials was proposed by Rajagopal and Wineman in [10]. According to [10], the
viscoelastic part of the stress tensor depends on the concentration in the following
way

(2)

∫ t

0

a(c(t, x), t − s)∇v(s, x) ds, in particular

∫ t

0

e−λ(c(t,x))(t−s)∇v(s, x) ds,

where λ is a positive function. So, we obtain an integrodifferential equation with a
nonconvolution kernel. Another situation where such equations appear are models
of aging of materials (see Rajagopal and Wineman [9]).

In the theory of integral and integrodifferential equations, kernels of positive
type (sometimes called positive definite) play an important role. See Gripenberg,
Londen and Staffans [4], Chapter 3, 17 and 20, Prüss [8], Chapter 3 and 7, or Re-
nardy, Hrusa and Nohel [11], Chapter IV.4. For more recent results see Cannarsa
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and Sforza [3] or Tatar [12], for nonconvolutionary case see Halanay [5], Kiffe [6],
or Mustapha and McLean [7].

Therefore, we present two sufficient conditions for nonconvolution kernels to
be of positive type. Let us mention that sufficient conditions yielding positive
definiteness are usually based on monotonicity of the kernel and its derivatives. It
is also partially the case of our first condition (Theorem 2.1). However, the second
result (Theorem 2.4) needs no monotonicity. It says that if a nonconvolution
kernel is a small perturbation of a convolution kernel of strong positive type, then
it is itself of (strong) positive type. This is more appropriate for the systems like
(1), where no monotonicity of c can be required.

The main abstract results are contained in Section 2 (Theorems 2.1 and 2.4).
In Section 3 we show stability resp. exponential stability for two one-dimensional
models of chemically reacting viscoelastic materials.

2. Nonconvolution functions of positive type

In this section we give two sufficient conditions for a nonconvolution kernel a
to be of positive type.

Let us remind that a convolution kernel b : R+ → R (R+ = [0,+∞)) is called
to be of positive type, if for every T > 0 and every w ∈ L2([0, T ]) the inequality

(3)

∫ T

0

w(t)

∫ t

0

b(t− s)w(s) ds dt ≥ 0

holds. All positive nonincreasing convex functions are of positive type, but there
are other functions of positive type that do not satisfy these monotonicity as-
sumptions (for example cos t or e−t cos t). Function b is called to be of strong
positive type, if there exists ε > 0 such that t 7→ b(t) − εe−t is of positive type.
For example, e−δt, e−t cos t are of strong positive type.

For nonconvolution kernels one usually requires

∫ T

0

w(t)

∫ t

0

k(t, s)w(s) ds dt ≥ 0.

However, since our applications contain integral terms of the form

∫ t

0

a(t, t− s)w(s) ds,

we will use the following definition.

Definition 2.1. Denote by DT the set {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T } and
D := {(t, s) ∈ R2 : 0 ≤ s ≤ t}. A function a ∈ L2

loc(D) is called to be of
c-positive type if

∫ t

0

w(s)

∫ s

0

a(s, s− σ)w(σ) dσ ds ≥ 0
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for all t > 0 and w ∈ L2([0, t]). A function a ∈ L2
loc(D) is called to be of ε-strong

c-positive type if (t, s) 7→ a(t, s) − εe−s is of c-positive type. The function a is
called to be of strong c-positive type if it is of ε-strong c-positive type for some
ε > 0.

Obviously, there is a correspondence with the usual definition: Function a ∈
L2
loc(D) is of c-positive type if and only if k(t, s) := a(t, t− s) is of positive type.

Observe further that a function b ∈ L2(R+) is of positive type, if and only if
a(t, s) := b(s) is of c-positive type. If a function b is defined on [0, S] only, we say
that it is of positive type, if the extension of b to R+ by 0 is of positive type (i.e.,
the inequality (3) holds for all T ≤ S).

Consider the following assumptions on a ∈ X(D), where

X(D) := {a ∈ L2
loc(D) : ∂1a ∈ L2

loc(D)}

(∂j denotes the derivative with respect to j’s variable).

(a1) There is ε > 0 such that for every T > 0, a(T, ·) is of ε-strong positive
type,

(a2) for every T > 0, −∂1a(T, ·) is of positive type.

Theorem 2.1. Let a ∈ X(D) satisfy (a1), (a2). Then a is of ε-strong c-positive
type.

Proof: Let us take ε > 0 from (a1) and write

a(t, r)− εe−r = a(T, r)− εe−r −
∫ T

t

∂1a(s, r) ds.

Using this equality we get

(4)

∫ T

0

w(t)

∫ t

0

[a(t, t− σ)− εe−(t−σ)]w(σ) dσ dt

=

∫ T

0

w(t)

∫ t

0

[
a(T, t− σ)− εe−(t−σ) −

∫ T

t

∂1a(s, t− σ) ds

]
w(σ) dσ dt

=

∫ T

0

w(t)

∫ t

0

[a(T, t− σ) − εe−(t−σ)]w(σ) dσ dt

+

∫ T

0

∫ T

t

w(t)

∫ t

0

−∂1a(s, t− σ)w(σ) dσ ds dt =: I1 + I2.

Here I1 is nonnegative by (a1) and I2 is by Fubini’s Theorem equal to

∫ T

0

∫ s

0

w(t)

∫ t

0

−∂1a(s, t− σ)w(σ) dσ dt ds.

This expression is nonnegative by (a2). �
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Corollary 2.2. Let a ∈ X(D) satisfy (a1) with ε = 0 and (a2). Then a is of
c-positive type.

Example 2.3. Let a1 ∈ W 1,2
loc (I) be positive and decreasing (nonincreasing),

a2 ∈ L2
loc(I) be of positive type and a(t, s) := a1(t)a2(s). Then a is of c-positive

type. Moreover, if a1 ≥ δ for some δ > 0 and a2 of strong positive type, then a is
of strong c-positive type. In particular, we can take a2(s) := e−λs, a(t, t − s) =
a1(t)e

−λ(t−s), λ > 0.

Consider a second system of assumptions on a ∈ Y , where

Y := {a : R2
+ → R : a, ∂1a ∈ L2

loc(D), ∂1a, ∂
2
2∂1a ∈ L1

loc(R+, L
1(R+))}.

By ‖ · ‖1 we denote the norm in L1(R+). Assume that

(A) There exists δ > 0 and for every T > 0 there exists ε(T ) > 0 and v1, v2,
v3 ∈ L1([0, T ]) such that
(A1) a(T, ·) is of ε(T )-strong positive type,
(A2) for a.a. t ∈ [0, T ], ∂1a(t, 0) = lims→+∞ ∂1a(t, s) = 0,
(A3) for a.a. t ∈ [0, T ], |∂2∂1a(t, 0)| ≤ v1(t), lims→+∞ ∂2∂1a(t, s) = 0,
(A4) for a.a. t ∈ [0, T ], ‖∂1a(t, ·)‖1 ≤ v2(t), ‖∂22∂1a(t, ·)‖1 ≤ v3(t),

(A5)
∫ T

0
v1(t) + v2(t) + v3(t) dt+ δ ≤ ε(T ).

If a(t, t− s) = ã(t− s) is independent on the first variable, it is a convolution
kernel and assumptions (A2)–(A5) are satisfied trivially. Assumptions (A2)–(A5)
mean that ∂1a is small, so a is a small perturbation of a convolution kernel.

Theorem 2.4. If a ∈ Y (D) satisfies (A), then a is of δ-strong c-positive type.

In the proof we use the same computations as in the proof of Theorem 2.1.
But this time, the integral I2 in (4) can be negative. However, we show that I2 in
(4) is dominated by I1, so their sum is nonnegative. We start with the following
two lemmas.

Lemma 2.5. Let b ∈W 2,1(R+) satisfy b(0) = limt→+∞ b(t) = limt→+∞ b′(t) = 0.
Then

(1 + ω2)|b̂(iω)| ≤ |b′(0)|+ ‖b‖1 + ‖b′′‖1 for all ω ∈ R.

Proof: We have

ω2b̂(iω) = iω(−iω)
∫ +∞

0

e−iωsb(s) ds = iω

[
[e−iωsb(s)]+∞

0 −
∫ +∞

0

e−iωsb′(s) ds

]

= −iω
∫ +∞

0

e−iωsb′(s) ds = [e−iωsb′(s)]+∞
0 −

∫ +∞

0

e−iωsb′′(s) ds.

Hence,

ω2|b̂(iω)| ≤ |b′(0)|+
∫ +∞

0

|b′′(s)| ds.

Since |b̂(iω)| ≤ ‖b‖1, the assertion follows. �



Nonmonotone nonconvolution functions of positive type and applications 215

Lemma 2.6. Let a ∈ L2([0, T ]) and for each s ∈ [0, T ], bs(·) ∈ L1([0, s]) such
that the mapping (s, t) 7→ bs(t) belongs to L2(DT ). Let c, k ∈ L1([0, T ]), k

nonnegative,
∫ T

0 k(s) ds ≤ 1. Let us define A(ω) = ĉ(iω) · ĉ(iω). Assume

ℜâ(iω) ≥ A(ω) and |b̂s(iω)| ≤ k(s)A(ω) for all ω ∈ R.

Then

(5)

∫ T

0

w(t)

∫ t

0

a(t− σ)w(σ) dσ dt+

∫ T

0

∫ s

0

w(t)

∫ t

0

bs(t− σ)w(σ) dσ dt ds ≥ 0

for all w ∈ L2([0, T ]).

Proof: The first integral in (5) is equal to

∫

R
〈ŵT (iω), ŵT (iω)â(iω)〉 dω =

∫

R
|ŵT (iω)|2ℜâ(iω) dω ≥

∫

R
|ŵT (iω)|2A(ω) dω,

=

∫

R
ŵT (iω)ĉ(iω) · ŵT (iω)ĉ(iω)dω =

∫ T

0

∣∣∣∣
∫ t

0

c(t− σ)wT (σ) dσ

∣∣∣∣
2

dt

where wT := w · χ[0,T ]. Absolute value of the integral from 0 to s in (5) is equal
to

∣∣∣∣
∫

R
〈ŵs(iω), ŵs(iω)b̂s(iω)〉 dω

∣∣∣∣ ≤
∫

R
|ŵs(iω)|2k(s)A(ω) dω

= k(s)

∫ s

0

∣∣∣∣
∫ t

0

c(t− σ)ws(σ) dσ

∣∣∣∣
2

dt = k(s)

∫ s

0

∣∣∣∣
∫ t

0

c(t− σ)wT (σ) dσ

∣∣∣∣
2

dt.

Hence, the expression on the left-hand side of (5) is larger or equal to

∫ T

0

∣∣∣∣
∫ t

0

c(t− σ)wT (σ) dσ

∣∣∣∣
2

dt−
∫ T

0

k(s)

∫ s

0

∣∣∣∣
∫ t

0

c(t− σ)wT (σ) dσ

∣∣∣∣
2

dt ds

=

∫ T

0

∣∣∣∣
∫ t

0

c(t− σ)wT (σ) dσ

∣∣∣∣
2

dt−
∫ T

0

∫ T

t

k(s)

∣∣∣∣
∫ t

0

c(t− σ)wT (σ) dσ

∣∣∣∣
2

ds dt

≥
∫ T

0

(
1−

∫ T

t

k(s) ds

)
·
∣∣∣∣
∫ t

0

c(t− σ)wT (σ) dσ

∣∣∣∣
2

dt ≥ 0.

�
Now, let us prove Theorem 2.4.

Proof: Take T > 0 and w ∈ L2([0, T ]) fixed. Writing

a(t, t− s)− δe−(t−s) = a(T, t− s)− δe−(t−s) −
∫ T

t

∂1a(r, t− s)dr
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we can use the same computations as in Theorem 2.1 and rewrite the integral

∫ T

0

w(t)

∫ t

0

[a(t, t− σ)− δe−(t−σ)]w(σ) dσ dt

in the form

∫ T

0

w(t)

∫ t

0

[a(T, t− σ)− δe−(t−σ)]w(σ) dσ dt

+

∫ T

0

∫ s

0

w(t)

∫ t

0

−∂1a(s, t− σ)w(σ) dσ dt ds.

We would like to apply Lemma 2.6 with

a(r) := a(T, r)− δe−r, bs(r) := −∂1a(s, r).

We will show that

k(t) :=
1

ε(T )− δ
(v1(t) + v2(t) + v3(t)), A(ω) :=

ε(T )− δ

1 + ω2
, c(t) := e−t

√
ε(T )− δ

satisfy the assumptions of Lemma 2.6.
It is known (see for example the text below Definition 16.4.1 in [4]) that every

convolution kernel f of ε-strongly positive type satisfy Re f̂(iω) ≥ ε
1+ω2 . Hence,

Re â(T, ·)(iω) ≥ ε(T )

1 + ω2
.

Since

Re

∫ +∞

0

e−iωtδe−t dt = Re
δ

1 + iω
=

δ

1 + ω2
,

we have

Re[ ̂a(T, ·)− δe−(·)(iω)] ≥ ε(T )− δ

1 + ω2
= A(ω) .

On the other hand we have from Lemma 2.5 for a.e. t ∈ [0, T ]

(1 + ω2) ̂∂1a(t, ·)(iω) ≤ v1(t) + v2(t) + v3(t)

(the assumptions of Lemma 2.5 are satisfied because of (A2), (A3), (A4)). Hence,

b̂s(iω) ≤
v1(s) + v2(s) + v3(s)

1 + ω2
= k(s)A(ω).

�

Corollary 2.7. If a ∈ Y (D) satisfies (A) with δ = 0, then a is of c-positive type.
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Example 2.8. Let a(t, s) = e−λ(t)s with λ : R+ → [α, β], 0 < α < β and |λ′|
small enough in comparison to α. Then the assumptions of Theorem 2.4 are
satisfied. In fact,

−∂1a(t, s) = e−λ(t)sλ′(t)s, −∂2∂1a(t, s) = e−λ(t)sλ′(t)(1 − λ(t)s)

and

−∂22∂1a(t, s) = e−λ(t)sλ(t)λ′(t)(λ(t)s − 2).

Hence, all the smallness assumptions on ∂1a are satisfied if λ′(t) is small enough
for all t ∈ R+.

3. Applications

In one-dimensional case, the system (1) (rewritten in Lagrangian coordinates)
can be reduced to

(6) ut = divS + f, ct = − div qc.

Consider qc = −∇c and constitutive relation

S(t, x) = µ∇u(t, x) +
∫ t

0

A(c(t, x), t− s)∇u(s, x) ds,

where µ = 0 or µ = 1. If A(z, t − s) = e−λ(z)(t−s) then we obtain the model
presented by Rajagopal and Wineman in [10]. We arrive at

(7) ut = µ∆u+ div

∫ t

0

A(c(t, x), t − s)∇u(s, x) ds+ f, ct = ∆c.

Now, we present two stability results that are standard in the convolutionary
case and obviously generalizable to the nonconvolutionary case. Then we apply
these results to (7). By results of the previous section we can guarantee that A◦ c
is of (strong) c-positive type, even if we do not know c.

Problem 1. Consider the initial value problem

(8) ut(t, x) = div

∫ t

0

a(t, t− s, x)∇u(s, x) ds, u(0, x) = u0(x)

with Dirichlet or Neumann boundary conditions. Let a ∈ L∞(D × Ω) such that
for almost all x ∈ Ω the function a(·, ·, x) is of c-positive type.

Theorem 3.1. Let u ∈ L2
loc(R+,W

1,2(Ω)), ut ∈ L2
loc(R+,W

−1,2(Ω)) be a weak
solution to (8). Then ‖u(t)‖2 is bounded on R+.

Proof: Taking u|[0,T ] as a test function in the weak formulation we obtain

1

2
(‖u(T )‖2 − ‖u0‖2) = −

∫ T

0

〈
∫ t

0

a(t, t− s)∇u(s) ds,∇u(t)〉 dt.
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The right-hand side is by Fubini’s Theorem nonpositive, hence

‖u(T )‖2 ≤ ‖u0‖2.

�
Problem 2. Consider the initial value problem

(9) ut(t, x) = ∆u(t, x)+div

∫ t

0

a(t, t−s, x)∇u(s, x) ds+f(t, x), u(0, x) = u0(x)

with Dirichlet boundary conditions. Let us denote (for d ∈ R)

fd(t, ·) := edtf(t, ·) and ad(t, r, ·) := a(t, r, ·)edr.

We assume that there exists δ > 0 arbitrarily close to 0, such that

f δ ∈ L2(R+,W
−1,2(Ω))

and a ∈ L∞(D × Ω) such that for almost all x ∈ Ω the function aδ(·, ·, x) is of
c-positive type.

Theorem 3.2. Let u ∈ L2
loc(R+,W

1,2(Ω)), ut ∈ L2
loc(R+,W

−1,2(Ω)) be a weak
solution to (9). Then eδt‖u(t)‖2 → 0 for some δ > 0.

Proof: Take δ > 0 small enough and denote v(t) := u(t)eδt. Then v is a weak
solution to

v̇(t) = (∆ + δI)v(t) + div

∫ t

0

a(t, t− s)eδ(t−s)∇v(s) ds+ eδtf(t).

Taking v|[0,T ] as a test function in the weak formulation we obtain

1

2
(‖v(T )‖2 − ‖u0‖2)− δ

∫ T

0

‖v(t)‖2 dt+
∫ T

0

‖∇v(t)‖2 dt

= −
∫ T

0

〈
∫ t

0

a(t, t− s)eδ(t−s)∇v(s) ds,∇v(t)〉 dt +
∫ T

0

〈eδtf(t), v(t)〉 dt.

The first term on the right-hand side is by Fubini’s Theorem nonpositive, hence
by Poincaré inequality applied to the second term on the left-hand side, Cauchy–
Schwartz, Hölder and Young inequality applied to the second term on the right-
hand side we obtain

‖v(T )‖2 +
∫ T

0

‖∇v(t)‖2 dt ≤ c(‖u0‖2 + ‖f δ‖2).

Hence,

‖u(t)‖ ≤ Ce−δt.

�
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Application 1. Let c be the solution of the diffusion equation in (7) with Dirich-
let or Neumann boundary conditions and an initial value c(0) = c0 smooth enough.
If A(z, t− s) = e−λ(z)(t−s) with λ : Ω → [α, β], α > 0 and d

dtλ(c(t)) is small, then
(by Example 2.8) the function a(·, ·, x) defined by a(t, t− s, x) := A(c(t, x), t− s)
is of c-positive type for a.a. x ∈ Ω. Moreover, the function aδ(·, ·, x) defined by

aδ(t, r, ·) := a(t, r, ·)eδr

is of c-positive type for all δ < α and a.a. x ∈ Ω (also by Example 2.8). We have
the following:

If the initial concentration c0 is small enough or if the dependence on the
concentration is small (λ′ small) then solutions to (7) are bounded if µ = 0 and
exponentially convergent to zero if µ = 1.

Application 2. Theorem 2.1 and Example 2.3 could be applied if we could keep
the function t 7→ c(t, x) decreasing and if the kernel is in the form A(c(t), t− s) =
ν(c(t))e−(t−s). It is not clear whether this case is physically relevant. However,
in the model of aging of materials presented by Rajagopal and Wineman in [9]
the kernel has this form and monotonicity of the aging function ν(c(t)) seems to
be a physically relevant condition.

Application 3. In [1] we have shown existence of global solution for the quasi-
linear hyperbolic equation

utt = χ(t, x, ux)uxx +

∫ t

0

∂3a(t, x, t− s)ψ(ux(s))x ds+ g, x ∈ [0, 1], t ∈ [0,+∞)

for a of strong c-positive type under appropriate assumptions on ψ, χ and g. This
yields global existence for a one-dimensional viscoelastic problem with dependence
on the concentration of a chemical

(10)
utt = χ(c, ux)uxx +

∫ t

0

k(c(t, x), t− s)ψ(ux(s))x ds+ g,

ct = cxx,

provided the initial concentration is smooth enough and small enough and k(z, t)
= e−λ(z)t (then a(t, x, t − s) := k(c(t, x), t − s) is of strong c-positive type by
Theorem 2.4 and Example 2.8).
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