[Fu] Fuchs M.: Liouville theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. DOI 10.1007/s00021-011-0070-1.
[FuSe] Fuchs M., Seregin G.A.:
Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics, 1749, Springer, Berlin-Heidelberg-New York, 2000.
DOI 10.1007/BFb0103751 |
MR 1810507 |
Zbl 0964.76003
[FuZha] Fuchs M., Zhang G.:
Liouville theorems for entire local minimizers of energies defined on the class $L \log L$ and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc. Var. 44 (2012), no. 1–2, 271–295.
DOI 10.1007/s00526-011-0434-7 |
MR 2898779
[Ga1] Galdi G.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations Vol. I. Springer Tracts in Natural Philosophy, 38, Springer, Berlin-Heidelberg-New York, 1994.
MR 1284205
[Ga2] Galdi G.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations Vol. II. Springer Tracts in Natural Philosophy, 39, Springer, Berlin-Heidelberg-New York, 1994.
MR 1284206 |
Zbl 0949.35005
[Ga3] Galdi G.:
On the existence of symmetric steady-state solutions to the plane exterior Navier-Stokes problem for arbitrary large Reynolds number. Advances in Fluid Dynamics, Quad. Mat., 4, Aracne, Rome, (1999), 1–25.
MR 1770187 |
Zbl 0948.35097
[GM] Giaquinta M., Modica G.:
Nonlinear systems of the type of stationary Navier-Stokes system. J. Reine Angew. Math. 330 (1982), 173–214.
MR 0641818
[La] Ladyzhenskaya O.A.:
The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, 1969.
MR 0254401 |
Zbl 0184.52603
[MNRR] Málek J., Nečas J., Rokyta M., Růžička M.:
Weak and Measure Valued Solutions to Evolutionary PDEs. Chapman & Hall, London, 1996.
MR 1409366 |
Zbl 0851.35002