Previous |  Up |  Next

Article

Title: On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds (English)
Author: Yilmaz, Hülya Bağdatlı
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 1
Year: 2012
Pages: 111-124
Summary lang: English
.
Category: math
.
Summary: The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds. (English)
Keyword: almost pseudo conharmonically symmetric manifold
Keyword: decomposable manifold
Keyword: scalar curvature
Keyword: torse-forming vector field
MSC: 53B20
MSC: 53C15
MSC: 53C20
idZBL: Zbl 06204925
idMR: MR3060013
.
Date available: 2012-06-25T08:27:41Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/142878
.
Reference: [1] Abussattar, D. B.: On conharmonic transformations in general relativity. Bulletin of the Calcutta Mathematical Society 41 (1966), 409–416.
Reference: [2] Adati, T., Miyazawa, T.: On Riemannian space with recurrent conformal curvature. Tensor, N.S. 18 (1967), 348–354. MR 0215251
Reference: [3] Chaki, M. C.: On pseudo symmetric manifolds. Analele Stiint, Univ. AI-I. Cuza 33 (1987), 53–58. Zbl 0634.53012, MR 0925690
Reference: [4] Chaki, M. C., Gupta, B.: On conformally symmetric spaces. Indian J. Math. 5 (1963), 113–122. Zbl 0122.39902, MR 0163255
Reference: [5] De, U. C., Biswas, H. A.: On pseudo-conformally symmetric manifolds. Bull. Calcutta Math. Soc. 85, 5 (1993), 479–486. Zbl 0821.53018, MR 1326445
Reference: [6] De, U. C., Gazi, A. K.: On almost pseudo symmetric manifolds. Ann. Univ. Sci., Budapest. Eötvös, Sect. Math. 51 (2008), 53–68. Zbl 1224.53056, MR 2567494
Reference: [7] De, U. C., Gazi, A. K.: On almost pseudo conformally symmetric manifolds. Demonstratio Math. 42, 4 (2009), 861–878. Zbl 1184.53034, MR 2588986
Reference: [8] Deszcz, R.: On pseudo symmetric spaces. Bull. Belg. Math. Soc., Serie A 44 (1992), 1–34.
Reference: [9] Ficken, F. A.: The Riemannian and affine differential geometry of product spaces. Annals of Math. 40 (1939), 892–913. Zbl 0023.37701, MR 0000531, 10.2307/1968900
Reference: [10] Ghosh, S., De, U. C., Taleshian, A.: Conharmonic curvature tensor on $N(K)$-contact metric manifolds. International Scholarly Research Network, ISRN Geometry, doi: 10.5402/2011/423798. Zbl 1226.53029
Reference: [11] Ishii, Y.: On conharmonic transformations. Tensor, N.S. 7 (1957), 73–80. Zbl 0079.15702, MR 0102837
Reference: [12] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).
Reference: [13] Mikeš, J.: Geodesic mappings of special Riemannian spaces. Colloq. Math. Soc. Janos Bolyai 46 (1988), 793–813 MR 0933875
Reference: [14] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (1996), 311–333. MR 1384327, 10.1007/BF02365193
Reference: [15] Rachůnek, L., Mikeš, J.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 44 (2005), 151–160. Zbl 1092.53016, MR 2218574
Reference: [16] Schouten, J. A.: Ricci Calculus. Spinger, Berlin, 1954. Zbl 0057.37803
Reference: [17] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N.S. 70 (2008), 119–134. Zbl 1193.53115, MR 2546909
Reference: [18] Siddiqui, S. A., Ahsan, Z.: Conharmonic curvature tensor and the space-time general relativity. Differential Geometry, Dynamical Systems 12 (2010), 213–220. MR 2606561
Reference: [19] Soos, G.: Über die geodätischen Abbildungen von Riemannschen Räumen auf projektivsymmetrische Riemannsche Räume. Acta Math. Acad. Sci. Hungar. 9 (1958), 359–361. MR 0101529, 10.1007/BF02020266
Reference: [20] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Colloq. Math. Soc. J. Bolyai, Differential geometry and its applications (Eger, 1989) 56 (1992), 663–670. Zbl 0791.53021, MR 1211691
Reference: [21] Walker, A. G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52, 2 (1950), 36–64. Zbl 0039.17702, MR 0037574
Reference: [22] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 20 (1944), 340–345. Zbl 0060.39102, MR 0014777
Reference: [23] Yano, K., Kon, M.: Structure on Manifolds. World Scientific, Singapore, 1986.
.

Files

Files Size Format View
ActaOlom_51-2012-1_9.pdf 249.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo