Previous |  Up |  Next

Article

Keywords:
almost pseudo conharmonically symmetric manifold; decomposable manifold; scalar curvature; torse-forming vector field
Summary:
The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds.
References:
[1] Abussattar, D. B.: On conharmonic transformations in general relativity. Bulletin of the Calcutta Mathematical Society 41 (1966), 409–416.
[2] Adati, T., Miyazawa, T.: On Riemannian space with recurrent conformal curvature. Tensor, N.S. 18 (1967), 348–354. MR 0215251
[3] Chaki, M. C.: On pseudo symmetric manifolds. Analele Stiint, Univ. AI-I. Cuza 33 (1987), 53–58. MR 0925690 | Zbl 0634.53012
[4] Chaki, M. C., Gupta, B.: On conformally symmetric spaces. Indian J. Math. 5 (1963), 113–122. MR 0163255 | Zbl 0122.39902
[5] De, U. C., Biswas, H. A.: On pseudo-conformally symmetric manifolds. Bull. Calcutta Math. Soc. 85, 5 (1993), 479–486. MR 1326445 | Zbl 0821.53018
[6] De, U. C., Gazi, A. K.: On almost pseudo symmetric manifolds. Ann. Univ. Sci., Budapest. Eötvös, Sect. Math. 51 (2008), 53–68. MR 2567494 | Zbl 1224.53056
[7] De, U. C., Gazi, A. K.: On almost pseudo conformally symmetric manifolds. Demonstratio Math. 42, 4 (2009), 861–878. MR 2588986 | Zbl 1184.53034
[8] Deszcz, R.: On pseudo symmetric spaces. Bull. Belg. Math. Soc., Serie A 44 (1992), 1–34.
[9] Ficken, F. A.: The Riemannian and affine differential geometry of product spaces. Annals of Math. 40 (1939), 892–913. DOI 10.2307/1968900 | MR 0000531 | Zbl 0023.37701
[10] Ghosh, S., De, U. C., Taleshian, A.: Conharmonic curvature tensor on $N(K)$-contact metric manifolds. International Scholarly Research Network, ISRN Geometry, doi: 10.5402/2011/423798. Zbl 1226.53029
[11] Ishii, Y.: On conharmonic transformations. Tensor, N.S. 7 (1957), 73–80. MR 0102837 | Zbl 0079.15702
[12] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).
[13] Mikeš, J.: Geodesic mappings of special Riemannian spaces. Colloq. Math. Soc. Janos Bolyai 46 (1988), 793–813 MR 0933875
[14] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (1996), 311–333. DOI 10.1007/BF02365193 | MR 1384327
[15] Rachůnek, L., Mikeš, J.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 44 (2005), 151–160. MR 2218574 | Zbl 1092.53016
[16] Schouten, J. A.: Ricci Calculus. Spinger, Berlin, 1954. Zbl 0057.37803
[17] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N.S. 70 (2008), 119–134. MR 2546909 | Zbl 1193.53115
[18] Siddiqui, S. A., Ahsan, Z.: Conharmonic curvature tensor and the space-time general relativity. Differential Geometry, Dynamical Systems 12 (2010), 213–220. MR 2606561
[19] Soos, G.: Über die geodätischen Abbildungen von Riemannschen Räumen auf projektivsymmetrische Riemannsche Räume. Acta Math. Acad. Sci. Hungar. 9 (1958), 359–361. DOI 10.1007/BF02020266 | MR 0101529
[20] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Colloq. Math. Soc. J. Bolyai, Differential geometry and its applications (Eger, 1989) 56 (1992), 663–670. MR 1211691 | Zbl 0791.53021
[21] Walker, A. G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52, 2 (1950), 36–64. MR 0037574 | Zbl 0039.17702
[22] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 20 (1944), 340–345. MR 0014777 | Zbl 0060.39102
[23] Yano, K., Kon, M.: Structure on Manifolds. World Scientific, Singapore, 1986.
Partner of
EuDML logo