Previous |  Up |  Next

Article

Keywords:
homogenization; $H$-convergence; multiscale convergence; parabolic; monotone; parabolic problem
Summary:
In this paper we homogenize monotone parabolic problems with two spatial scales and any number of temporal scales. Under the assumption that the spatial and temporal scales are well-separated in the sense explained in the paper, we show that there is an H-limit defined by at most four distinct sets of local problems corresponding to slow temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar case), rapid temporal oscillations, and rapid resonant spatial and temporal oscillations (the ``rapid'' self-similar case), respectively.
References:
[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[2] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. DOI 10.1017/S0308210500022757 | MR 1386865 | Zbl 0866.35017
[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland Publishing Amsterdam-New York-Oxford (1978). MR 0503330
[4] Evans, L. C.: The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb., Sect. A 111 (1989), 359-375. DOI 10.1017/S0308210500018631 | MR 1007533 | Zbl 0679.35001
[5] Flodén, L., Olsson, M.: Reiterated homogenization of some linear and nonlinear monotone parabolic operators. Can. Appl. Math. Q. 14 (2006), 149-183. MR 2302654 | Zbl 1142.35331
[6] Flodén, L., Olsson, M.: Homogenization of some parabolic operators with several time scales. Appl. Math. 52 (2007), 431-446. DOI 10.1007/s10492-007-0025-2 | MR 2342599 | Zbl 1164.35315
[7] Flodén, L., Holmbom, A., Olsson, M., Svanstedt, N.: Reiterated homogenization of monotone parabolic problems. Ann. Univ. Ferrara, Sez. VII Sci. Mat. 53 (2007), 217-232. DOI 10.1007/s11565-007-0014-0 | MR 2358224 | Zbl 1180.35076
[8] Holmbom, A.: Some modes of convergence and their application to homogenization and optimal composites design. Doctoral thesis 1996:208 D Department of Mathematics, Luleå University Luleå (1996).
[9] Holmbom, A.: Homogenization of parabolic equations---an alternative approach and some corrector-type results. Appl. Math. 42 (1997), 321-343. DOI 10.1023/A:1023049608047 | MR 1467553 | Zbl 0898.35008
[10] Holmbom, A., Silfver, J.: On the convergence of some sequences of oscillating functionals. WSEAS Trans. Math. 5 (2006), 951-956 \MR 2241788. MR 2241788
[11] Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems. Appl. Math. 50 (2005), 131-151. DOI 10.1007/s10492-005-0009-z | MR 2125155 | Zbl 1099.35011
[12] Kun'ch, R. N., Pankov, A. A.: G-convergence of the monotone parabolic operators. Dokl. Akad. Nauk Ukr. SSR, Ser. A (1986), 8-10 Russian. MR 0897902 | Zbl 0621.35005
[13] Lions, J.-L., Lukkassen, D., Persson, L.-E., Wall, P.: Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math., Ser. B 22 (2001), 1-12. DOI 10.1142/S0252959901000024 | MR 1823125 | Zbl 0979.35047
[14] Mascarenhas, M. L., Toader, A.-M.: Scale convergence in homogenization. Numer. Funct. Anal. Optimization 22 (2001), 127-158. DOI 10.1081/NFA-100103791 | MR 1841866 | Zbl 0995.49013
[15] Murat, F.: H-convergence. Séminaire d'analyse fonctionelle et numérique de l'Université d'Alger (1978).
[16] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[17] Nguetseng, G.: Homogenization structures and applications. I. Z. Anal. Anwend. 22 (2003), 73-107. DOI 10.4171/ZAA/1133 | MR 1962077 | Zbl 1045.46031
[18] Nguetseng, G., Woukeng, J. L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients. Electron. J. Differ. Equ., paper No. 82 (2004), Electronic only. MR 2075421 | Zbl 1058.35025
[19] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl. 66 (2007), 968-1004. DOI 10.1016/j.na.2005.12.035 | MR 2288445 | Zbl 1116.35011
[20] Persson, J.: Homogenisation of monotone parabolic problems with several temporal scales: The detailed arXiv e-print version. arXiv:1003.5523 [math.AP].
[21] Spagnolo, S.: Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Sc. Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 657-699 Italian. MR 0225015 | Zbl 0153.42103
[22] Svanstedt, N.: G-convergence and homogenization of sequences of linear and nonlinear partial differential operators. Doctoral thesis 1992:105 D Department of Mathematics, Luleå University Luleå (1992).
[23] Tartar, L.: Cours peccot. Collège de France (1977), unpublished, partially written in \cite{Mura78}.
[24] Tartar, L.: Quelques remarques sur l'homogénéisation. In: Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976 M. Fujita Society for the Promotion of Science (1978), 468-482.
[25] Woukeng, J. L.: Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales. Ann. Mat. Pura Appl. 189 (2010), 357-379. DOI 10.1007/s10231-009-0112-y | MR 2657414 | Zbl 1213.35067
Partner of
EuDML logo