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HOMOGENIZATION OF MONOTONE PARABOLIC PROBLEMS

WITH SEVERAL TEMPORAL SCALES
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Abstract. In this paper we homogenize monotone parabolic problems with two spatial
scales and any number of temporal scales. Under the assumption that the spatial and
temporal scales are well-separated in the sense explained in the paper, we show that there
is an H-limit defined by at most four distinct sets of local problems corresponding to slow
temporal oscillations, slow resonant spatial and temporal oscillations (the “slow” self-similar
case), rapid temporal oscillations, and rapid resonant spatial and temporal oscillations (the
“rapid” self-similar case), respectively.
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1. Introduction

We will give here a brief survey—with some important references—of homogeniza-

tion theory and two-scale convergence techniques which is followed by a statement

of the research objective of the present paper. Finally in this section we give a list

of notation employed in the paper.

1.1. Homogenization theory. Homogenization theory is the study of the

convergence—in some suitable sense—of sequences of equations involving sequences

of operators and (possibly) source functions and the responding sequences of solu-

tions. The main applications involve the study of the convergence of sequences of

partial differential equations described by heterogeneous coefficients which become

more and more refined such that the problem tends to a homogenized limit. In the

case of parabolic partial differential equations the convergence modes used to achieve

homogenized limits are the so called G- and H-convergences, where the former is
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employed when the coefficients can be arranged as a symmetric matrix (see [21]),

and the latter is the generalization which includes non-symmetric matrices (see [15],

[24]) and even non-linear problems (see [23]). “Homogenizing” a problem means in

this context to find the limit in the G- or H-convergence process.

1.2. Two-scale convergence. The theory of homogenization experienced a

quantum leap in the late 1980’s when the two-scale convergence technique was

introduced (see [16], [1])—effectively replacing Tartar’s method of oscillating test

functions (see [23], [24]) as the main tool to achieve G- or H-convergence—and

the technique has subsequently improved since then. Two-scale convergence (with

generalizations such as multiscale convergence [2], “generalized” two-scale conver-

gence [8], scale convergence [14], λ-scale convergence [10], Σ-convergence [17] etc.)

is today an indispensable tool to the modern homogenization theorist.

1.3. Objectives and main results of the paper. The main purpose of this

paper is to perform homogenization of monotone, possibly non-linear, parabolic prob-

lems of the type

(1.1)















∂

∂t
uε(x, t) −∇ · a

(

x, t,
x

ε
,
t

ε′1
, . . . ,

t

ε′m
;∇uε

)

= f(x, t) in Ω × (0, T ),

uε(x, 0) = u0(x) in Ω,

uε(x, t) = 0 on ∂Ω × (0, T ),

i.e., having two spatial and m+ 1 temporal scales, where Ω is an open bounded set

in RN and T > 0. As ε tends to 0 we get a sequence of equations given by (1.1) above

and the objective is to find the homogenized problem, i.e., to find the homogenized

limit b of the flux a which defines a homogenized equation which admits a limit u

of the sequence of solutions {uε}. In order to homogenize (1.1) we impose a cer-

tain separatedness restriction on the scale functions ε, ε′1, . . . , ε
′
m. The homogenized

limit b will not contain any fast spatial or temporal oscillations and (if considered as a

function of ∇u) is given in terms of an integral over the local variables y, s1, . . . , sm

involving the flux a and a function u1 which is the unique solution of some local

problems depending on the behaviour of the scale functions. We discern four dis-

tinct cases giving different local problems for u1, namely the cases (i) ε
2/ε′m → 0 as

ε→ 0, (ii) ε′m ∼ ε2, and (iii) ε′i/ε
2 → 0 but ε′i−1/ε

2 → ∞ as ε→ 0 for some ε′i tend-

ing more rapidly to 0 than ε does, and (iv) ε′l̊−1 ∼ ε2 for some ε′l̊−1 6= ε′m tending

more rapidly to 0 than ε does. Case (i) corresponds to slow temporal oscillations

(compared to the spatial one), (ii) is the so-called “slow” self-similar case where the

spatial and temporal oscillations are in resonance, (iii) corresponds to rapid temporal

oscillations, and (iv) is the “rapid” self-similar case.
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1.4. Notation and conventions. The following notation and conventions are

used in this paper.

Throughout the paper, Ω defining the spatial domain is a non-empty open bounded

set in R
N with Lipschitz boundary, and T > 0 is the maximal time defining the

temporal domain (0, T ).

We introduce the integer sets [[i, j]] = [i, j] ∩ Z for 0 < i 6 j, and [[i]] = [1, i] ∩ Z.

Furthermore, let [[i]]0 = [0, i] ∩ Z. Note that we naturally interpret, e.g., [[0]] = ∅.

Let F(A)/R denote all functions in F(A) with mean value zero over A ⊂ R
M , and

let F#(Z) denote all locally F functions over RM that are periodical repetitions of

some functions in F(Z) where Z = (0, 1)M .

Let F1, . . . ,Fk be some function spaces and introduce the tensor product space

F = F1 ⊗ . . .⊗Fk. We then define the subset F1 ⊙ . . .⊙Fk of F by

F1 ⊙ . . .⊙Fk = {f ∈ F : f = f1 . . . fk for some fi ∈ Fi, i ∈ [[k]]}

which, in general, is not a subspace of F though spanning it.

There are two kinds of partial derivatives. The partial derivatives of the first kind,

∇ = (∂/∂x1, . . . , ∂/∂xN) and ∂/∂t, only discern whether one differentiates with

respect to the space variable x = (x1, . . . , xN ) or the time variable t, respectively.

The partial derivatives of the second kind, ∇x = (∂x1 , . . . , ∂xN
) and ∂t (i.e., with

the variable as a subscript) are proper partial derivatives with respect to space and

time, respectively. Note that partial derivatives of the local variables will always be

of the proper, second kind. Example: Let ψ = ψ(x, t, y, s) be a weakly differentiable

real-valued function with respect to the global space and time variables x and t and

the local space and time variables y and s. Suppose y = ηx and s = σt for some real

constants η and σ, then the chain rule and the conventions above give

∇ψ = ∇xψ + η∇yψ and
∂

∂t
ψ = ∂tψ + σ∂sψ;

these differentiation rules will be important to keep in mind later in this paper.

2. Preliminaries

In order to perform the homogenization procedure for monotone parabolic prob-

lems with several temporal scales we first need to take a look at the necessary back-

ground theory.

2.1. Multiscale convergence. The concept of two-scale convergence was in-

troduced in 1989 by Nguetseng (see [16]) and further developed by Allaire in 1992
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(see [1]). In words, two-scale convergence is a kind of weak convergence mode for a

sequence of functions of a global variable where the limit is a function of both the

global (or macroscopic) and the local (or microscopic) variable.

The rigorous definition of two-scale convergence is given below. (If nothing else is

stated, in this paper we let y ∈ Y where Y = (0, 1)N .)

Definition 2.1. A sequence {uε} in L2(Ω) is said to two-scale converge to a

limit u0 ∈ L2(Ω × Y ) if, as ε→ 0 (from above),

∫

Ω

uε(x)v
(

x,
x

ε

)

dx→

∫

Ω

∫

Y

u0(x, y)v(x, y) dy dx

for all v ∈ L2(Ω; C#(Y )), and we write uε
2
⇀ u0 as ε→ 0.

From now on we assume that all limits are taken as ε→ 0 (from above) if nothing

else is stated.

In Definition 2.2 below we introduce the notion of scale functions which are func-

tions with respect to the scale parameter.

Definition 2.2. A scale function ε∗ : R+ → R is a real-valued function of the

scale parameter ε for which ε∗(ε) → 0 (i.e., ε∗ is microscopic), and for which there

exists δ > 0 such that ε∗(ε) > 0 for all 0 < ε < δ (i.e., ε∗ is ultimately positive).

The concept of scale functions leads to the notion of multiscale convergence which

was introduced in 1996 by Allaire and Briane (see [2]) as a generalization of two-scale

convergence in order to be able to perform homogenization of problems with multiple

scales. This convergence mode is defined below. (If nothing else is stated, in this

paper we let yi ∈ Yi, where Yi = (0, 1)N , i ∈ [[n]].)

Definition 2.3. A sequence {uε} in L2(Ω) is said to (n+ 1)-scale converge to a

limit u0 ∈ L2(Ω × Y1 × . . .× Yn) if

∫

Ω

uε(x)v
(

x,
x

ε1
, . . . ,

x

εn

)

dx

→

∫

Ω

∫

Y1

. . .

∫

Yn

u0(x, y1, . . . , yn)v(x, y1, . . . , yn) dyn . . . dy1 dx

for all v ∈ L2(Ω; C#(Y1 × . . .× Yn)), and we write uε
n+1
−−⇀ u0.

In order to simplify the notation, from now on we will write yn = (y1, . . . , yn)

and Y n = Y1 × . . .× Yn so that yn ∈ Y n which collects the local variables and local

sets under one roof. (Naturally, the Lebesgue measure on Y n is denoted dyn.) We

also write xε
n = (x/ε1, . . . , x/εn) in the same spirit where we note that xε

n actually
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depends on the particular choice of scale functions ε1, . . . , εn. Of course, multiscale

convergence is highly dependent on the behaviour of the (spatial) scale functions.

For ordered lists of scale functions we have the following definitions:

Definition 2.4. The list {εi}n
i=1 of scale functions is said to be separated if

εk+1/εk → 0 for all k ∈ [[n− 1]].

Definition 2.5. The list {εi}
n
i=1 of scale functions is said to be well-separated

if there exists a positive integer l such that εk
−1(εk+1/εk)l → 0 for all k ∈ [[n− 1]].

R em a r k 2.6. Note that well-separatedness is a stronger requirement than sep-

aratedness.

Homogenization for linear parabolic problems with several temporal scales using

the multiscale convergence technique was first achieved by Flodén and Olsson in 2007

(see [6]). This was a further development of the work by Holmbom in 1996 (see [8])

where two-scale convergence was employed to homogenize linear parabolic problems

with both a spatial and a temporal microscale. General (n+ 1,m+ 1)-scale conver-

gence can be expressed according to the definition below. (If nothing else is stated,

in this paper we let sj ∈ Sj , where Sj = (0, 1), j ∈ [[m]].)

Definition 2.7. A sequence {uε} in L2(Ω× (0, T )) is said to (n+1,m+1)-scale

converge to a limit u0 ∈ L2(Ω × (0, T )× Y n × S1 × . . .× Sm) if

∫ T

0

∫

Ω

uε(x, t)v
(

x, t,xε
n,

t

ε′1
, . . . ,

t

ε′m

)

dxdt

→

∫ T

0

∫

Ω

∫

Y n

∫

S1

. . .

∫

Sm

u0(x, t,yn, s1, . . . , sm)

× v(x, t,yn, s1, . . . , sm) dsm . . . ds1 dyn dxdt

for all v ∈ L2(Ω × (0, T ); C#(Y n × S1 × . . .× Sm)), and we write uε
(n+1,m+1)
−−−−−⇀ u0.

Trivially, this definition also works for vector valued functions where the product

becomes the dot product, or mixed scalar and vector valued functions which would

give vector valued integrals above. In particular, gradient functions will later be of

interest.

In order to simplify the notation, from now on we will write sm = (s1, . . . , sm) and

Sm = S1 × . . .× Sm so that sm ∈ Sm. (The Lebesgue measure on Sm will of course

be denoted dsm.) Moreover, t
ε
m = (t/ε′1, . . . , t/ε

′
m) which depends on the particular

choice of temporal scale functions {ε′j}
m
j=1. Furthermore, ΩT = Ω × (0, T ) so that

(x, t) ∈ ΩT , and Ynm = Y n × Sm so that (yn, sm) ∈ Ynm.

It is clear that we need to introduce some convenient restrictions on the spatial

and temporal scale functions {εi}n
i=1 and {ε

′
j}

m
j=1 in order for them to collaborate in

195



a meritorious manner. In Definition 2.8 below we define a certain set of pairs of lists

of such meritoriously collaborating spatial and temporal scale functions.

Definition 2.8. Suppose we have a list {εi}n
i=1 of n spatial scale functions and

a list {ε′j}
m
j=1 of m temporal scale functions. We say that the pair ({εi}n

i=1, {ε
′
j}

m
j=1)

belongs to the set J nm
sep if {εi}n

i=1 and {ε′j}
m
j=1 are both separated and the following

two conditions hold:

(i) There exist possibly empty subsets A ⊂ [[n]] and A′ ⊂ [[m]] with |A| = |A′| = k

such that there exist bijections β : [[k]] → A and β′ : [[k]] → A′, respectively,

such that εβ(i) = ε′
β′(i) for all i ∈ [[k]]. (In the empty case k = 0 we have no

requirement.)

(ii) There exists a permutation π on [[n+m− 2k]] such that the permutation

{ε′′π(l)}
n+m−2k
l=1 of the list {ε′′l }

n+m−2k
l=1 = {{εi}i6∈A, {ε

′
j}j 6∈A′} of the remaining

n+m− 2k scale functions is separated. (In the empty case n+m− 2k = 0 we

have no requirement.)

If we require well-separatedness instead of mere separatedness we can define the

corresponding set J nm
wsep.

Note that J nm
wsep ⊂ J nm

sep . The idea of the definition above is that we can localize

all the spatial and temporal scale functions in two disjoint categories, (i) and (ii),

where the former category consists of those that are equal and the latter category

consists of those that are jointly (well-)separated. Note also that since neither n nor

m vanishes, it can not be the case that both categories (i) and (ii) of Definition 2.8

are empty.

The details of the rather straightforward proofs of the propositions and theorems

below concerning some convergence results in the multiscale setting can be found

in [20] by the author which is available at the arXiv e-print database operated by

Cornell University. It should be noted that the proofs are similar to the ones for the

corresponding results in [6] from 2007 by Flodén and Olsson which in turn utilize

the techniques employed in [8] from 1996 by Holmbom.

We have the following important compactness result.

Theorem 2.9. Suppose that the pair ({εi}n
i=1, {ε

′
j}

m
j=1) of lists of spatial and

temporal scale functions belongs to J nm
sep . Furthermore, let {uε} be a bounded

sequence in L2(ΩT ). Then there is a function u0 ∈ L2(ΩT × Ynm) such that, up to

a subsequence, uε
(n+1,m+1)
−−−−−⇀ u0.

P r o o f. See Theorem 13 in [20]. �
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In the remainder of the paper, letWk = H1
#(Yk)/R, k ∈ [[n]]. For the (n+1,m+1)-

scale convergence of sequences of gradients we have the important Theorem 2.10

below.

Theorem 2.10. Suppose that the pair ({εi}n
i=1, {ε

′
j}

m
j=1) of lists of spatial and

temporal scale functions belongs to J nm
wsep. Moreover, assume that {uε} is a bounded

sequence in H1(0, T ;H1
0 (Ω), H−1(Ω)). Then, up to a subsequence, we have

uε → u in L2(ΩT ),

uε ⇀ u in L2(0, T ;H1
0 (Ω)),

and

∇uε
(n+1,m+1)
−−−−−⇀ ∇u+

n
∑

k=1

∇yk
uk,

where u ∈ L2(0, T ;H1
0(Ω)) and uk ∈ L2(ΩT × Y(k−1)m;Wk) for all k ∈ [[n]].

P r o o f. See Theorem 18 in [20]. �

When performing the homogenization later in this paper we will limit ourselves to

two spatial scales, n = 1, where the microscale is described by the single spatial scale

function ε1. The scale function ε1 is, without loss of generality, assumed to coincide

with the scale parameter, i.e., ε1(ε) = ε. Note that in what follows, the list {ε} of

the single spatial scale function will be written as ε for brevity. In the remainder of

the paper, let W = H1
#(Y )/R. In this setting we have Theorem 2.11 below.

Theorem 2.11. Suppose that the pair (ε, {ε′i}
m
i=1) of lists of spatial and temporal

scale functions belongs to J 1m
wsep and assume that {uε} is a bounded sequence in

H1(0, T ;H1
0 (Ω), H−1(Ω)). Then, up to a subsequence,

∫

ΩT

1

ε
uε(x, t)ϕ

(

x, t,
x

ε
, tε

m

)

dxdt

→

∫

ΩT

∫

Y1m

u1(x, t, y, sm)ϕ(x, t, y, sm) dsm dy dxdt

for all ϕ ∈ D(Ω) ⊙D(0, T )⊙ (C∞
# (Y )/R)⊙

m
∏

i=1

C∞
# (Si), where u1 ∈ L2(ΩT × Sm;W)

is as in Theorem 2.10 with n = 1.

P r o o f. See Theorem 20 in [20]. �
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R em a r k 2.12. Theorem 2.11 is a mere varant of Lemma 3.1 in [19] in the special

case of periodicity but generalized to include many temporal scales. In its turn, the

result in [19] is a mere variation of Corollary 3.3 in [9] generalized to the non-periodic

setting and with the sequence {ε−1uε} (as in Theorem 2.11 above) instead of the

slightly more complicated sequence {ε−1(uε − u)} found in [8], [9].

The convergence mode in Theorem 2.11 can be regarded as a kind of feeble, or

“very weak”, (2,m+ 1)-scale convergence of {ε−1uε} since the heavily restricted set

of test functions in question is more permissible compared to the larger set of test

functions employed in ordinary (2,m+ 1)-scale convergence.

2.2. H-convergence of monotone parabolic problems. In 1967 Spagnolo in-

troduced the notion of G-convergence for linear problems governed by symmetric

matrices (see [21]). The name “G”-convergence comes from the fact that this con-

vergence mode corresponds to the convergence of the Green functions associated to

the sequence of problems. The G-convergence of symmetric matrices is defined via

the weak convergence of solutions to the sequence of problems.

The concept of H-convergence—“H” as in “homogenization”—is a generalization of

Spagnolo’s G-convergence to cover also non-symmetric matrices. It was introduced

in 1976 by Tartar (see [24]) and further developed by Murat in 1978 (see [15]),

and in 1977 Tartar defined H-convergence for non-linear monotone problems. Early

studies of H-convergence for non-linear monotone parabolic problems were conducted

by Kun’ch and Pankov in 1986 (see [12]) and Svanstedt in 1992 (see [22]).

We introduce a convenient set of flux functions in the following definition.

Definition 2.13. A function a : ΩT × R
N → R

N is said to belong to M(ΩT )

if the following four structure conditions are satisfied for some C0, C1 > 0 and

0 < α 6 1:

• a(x, t; 0) = 0 a.e. (x, t) ∈ ΩT ;

• a(·; k) is (Lebesgue) measurable for every k ∈ R
N ;

• (a(x, t; k)−a(x, t; k′))·(k−k′) > C0|k−k′|2 a.e. (x, t) ∈ ΩT and for all k, k
′ ∈ R

N ;

• |a(x, t; k) − a(x, t; k′)| 6 C1(1 + |k| + |k′|)1−α|k − k′|α a.e. (x, t) ∈ ΩT and for

all k, k′ ∈ R
N .

The important concept of H-convergence of monotone parabolic problems—coined

HMP-convergence in this paper for brevity—is introduced in the definition below.

Definition 2.14. Suppose {aε} is a sequence of fluxes inM(ΩT ). We say that

{aε} HMP-converges to the flux b ∈ M(ΩT ) if, for any f ∈ L2(0, T ;H−1(Ω)) and
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any u0 ∈ L2(Ω), the weak solutions uε ∈ H1(0, T ;H1
0 (Ω), H−1(Ω)) to the sequence

(2.1)



















∂

∂t
uε(x, t) −∇ · aε(x, t;∇uε) = f(x, t) in ΩT ,

uε(x, 0) = u0(x) in Ω,

uε(x, t) = 0 on ∂Ω × (0, T )

of evolution problems satisfy

{

uε ⇀ u in L2(0, T ;H1
0 (Ω)),

aε(· ;∇uε) ⇀ b( ·;∇u) in L2(ΩT )N ,

where u ∈ H1(0, T ;H1
0(Ω), H−1(Ω)) is the weak unique solution to the evolution

problem

(2.2)



















∂

∂t
u(x, t) −∇ · b(x, t;∇u) = f(x, t) in ΩT ,

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on ∂Ω × (0, T ).

Moreover, for brevity, we write this convergence aε HMP−→ b, and b is called the HMP-

limit of {aε}.

It is Definition 2.14 above that demarcates what we mean by homogenizing a

problem. Let us introduce the following five structure conditions on the function

a : ΩT × R
nN+m × R

N :

(I) a(x, t,yn, sm; 0) = 0 for all (x, t) ∈ ΩT and all (yn, sm) ∈ R
nN+m;

(II) a(x, t, · ; k) is Ynm-periodic for all (x, t) ∈ ΩT and all k ∈ R
N , and a(· ; k) is

continuous for all k ∈ R
N ;

(III) a(x, t,yn, sm; ·) is continuous for all (x, t) ∈ ΩT and all (yn, sm) ∈ R
nN+m;

(IV) there exists C0 > 0 such that

(a(x, t,yn, sm; k) − a(x, t,yn, sm; k′)) · (k − k′) > C0|k − k′|2

for all (x, t) ∈ ΩT , all (yn, sm) ∈ R
nN+m and all k, k′ ∈ R

N ;

(V) there exist C1 > 0 and 0 < α 6 1 such that

|a(x, t,yn, sm; k) − a(x, t,yn, sm; k′)| 6 C1(1 + |k| + |k′|)1−α|k − k′|α

for all (x, t) ∈ ΩT , all (yn, sm) ∈ R
nN+m and all k, k′ ∈ R

N .
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We introduce the oscillating fluxes

(2.3) aε(x, t; k) = a(x, t,xε
n, t

ε
m; k), (x, t) ∈ ΩT , k ∈ R

N .

Below we have a proposition governing some a priori estimates on the solutions to

the sequence of evolution problems.

Proposition 2.15. Suppose that a : ΩT × R
nN+m × R

N → R
N fulfils the

structure conditions (I)–(V). Then the sequence {uε} of weak solutions to the

evolution problem 2.1 with {aε} defined through (2.3) is uniformly bounded in

H1(0, T ;H1
0 (Ω), H−1(Ω)).

P r o o f. See Proposition 31 in [20]. �

R em a r k 2.16. The problem (2.1) with {aε} defined through (2.3) is the same

as (1.1) but generalized to n + 1 spatial scales. Note that the weak formulation

of (2.1) is that, given f ∈ X ′ = L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω), we want to find

uε ∈ H1(0, T ;H1
0(Ω), H−1(Ω)) such that

〈 ∂

∂t
uε, v

〉

X′,X
+

∫

ΩT

a(x, t,xε
n, t

ε
m;∇uε) · ∇v(x, t) dxdt(2.4)

=

∫

ΩT

f(x, t)v(x, t) dxdt

for all v ∈ X = L2(0, T ;H1
0(Ω)).

3. Homogenization

In this section we derive some homogenization results for monotone parabolic

problems with several temporal scales.

3.1. Historical background. The notion of homogenization of problems with

multiple microscales was introduced in 1978 by Bensoussan, Lions and Papanico-

laou (see [3]) who homogenized problems with two microscales characterized by the

list {ε, ε2} of scale functions. In 1996, Allaire and Briane (see [2]) succeeded to

generalize this to homogenization of linear elliptic problems with an arbitrary num-

ber of microscales—even infinitely many—without even assuming the scale func-

tions to be power functions using the notion of (well-)separatedness instead. This

was achieved by introducing the multiscale convergence technique. In 2001, Lions,
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Lukkassen, Persson, and Wall performed homogenization of non-linear monotone el-

liptic problems with scale functions {ε, ε2} (see [13]), and in 2005 Holmbom, Svanst-

edt, and Wellander studied homogenization of linear parabolic problems with pairs

({ε, ε2}, εk) of lists of scale functions (see [11]). In 2006, Flodén and Olsson gen-

eralized to monotone parabolic problems (see [5]; see also [7] by Flodén, Olsson,

Holmbom, and Svanstedt for a related study from 2007), and in 2007 Flodén and

Olsson achieved homogenization results for linear parabolic problems involving pairs

(ε, {ε, εk}) of lists of scale functions (see [6]); this was actually the first time ho-

mogenization was performed for problems with more than one temporal microscale.

In 2009, Woukeng studied non-linear non-monotone degenerated parabolic problems

with the pair (ε, {ε, εk}) of lists of spatial and temporal scale functions (see [25]).

This paper deals with monotone parabolic problems with an arbitrary number

of temporal microscales not necessarily characterized by scale functions in the form

of power functions but instead using the concept of (well-)separatedness in spirit

of [2]. Furthermore—for simplicity—we only consider two spatial scales of which one

is microscopical, i.e., henceforth we fix n = 1.

3.2. A special mutually disjoint collection of sets. Let k ∈ [[m]]. Define

J m∼k
wsep to be the set of all pairs (ε, {ε′j}

m
j=1) in J

1m
wsep such that ε

′
k ∼ ε, i.e., ε′k asymp-

totically equals ε; recall that this means that for some q → 1, ε′k = qε. There is no

loss of generality to assume mere asymptotic equality rather than the ostensibly more

general asymptotic equality modulo a positive constant, i.e., ε′k ∼ Cε, C ∈ R. In

other words, J m∼k
wsep consists of pairs (ε, {ε′j}

m
j=1) for which the temporal scale func-

tions are separated and the kth temporal scale function coincides asymptotically

with the spatial scale function. This clearly explains the convenient notation “∼ k”

which could be read “the spatial scale is asymptotically equal to the kth temporal

scale”.

Define the collection {Jm∼k
wsep,i}

1+2(m−k)
i=1 of 1 + 2(m− k) subsets of J m∼k

wsep by

Jm∼k
wsep,1 =

{

(ε, {ε′j}
m
j=1) ∈ J m∼k

wsep :
ε2

ε′m
→ 0

}

,

Jm∼k
wsep,2 =

{

(ε, {ε′j}
m
j=1) ∈ J m∼k

wsep : ε′m ∼ ε2
}

,

Jm∼k
wsep,2+i−k =

{

(ε, {ε′j}
m
j=1) ∈ J m∼k

wsep :
ε′i
ε2

→ 0 but
ε′i−1

ε2
→ ∞

}

,

and

J m∼k
wsep,1+m+i̊−2k =

{

(ε, {ε′j}
m
j=1) ∈ J m∼k

wsep : ε′i̊−1 ∼ ε2
}

for i ∈ [[k + 1,m]] and i̊ ∈ [[k + 2,m]]. Note that if k = m, the collection of subsets

of J m∼m
wsep reduces to merely {Jm∼m

wsep,1}. The sets J
m∼k
wsep,1, J

m∼k
wsep,2 and the collections
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{Jm∼k
wsep,2+i−k}

m
i=k+1 and {Jm∼k

wsep,1+m+i̊−2k}
m
i̊ =k+2 correspond to slow temporal oscil-

lations, slow resonance (i.e., “slow” self-similar case), rapid temporal oscillations and

rapid resonance (i.e., “rapid” self-similar case), respectively.

R em a r k 3.1. It can be shown that the collection {Jm∼k
wsep,i}

1+2(m−k)
i=1 of 1 +

2(m − k) subsets of J m∼k
wsep is mutually disjoint for every k ∈ [[m]]; see Theorem 32

in [20].

R em a r k 3.2. In the “classical” case of temporal scale functions expressed as

power functions it can be proven that one does not merely have mutual disjointness

but that the subsets form a partition of the universe of “classical” lists. For more

details, see Proposition 33 in [20].

E x am p l e 3.3. Let m = 5 and k = 3, giving the collection {J 5∼3
wsep,j}

5
j=1 of five

subsets of J 5∼3
wsep, and consider the following six pairs of lists of scale functions:

e1 =
{

ε,
{

ε0.2, ε0.5, ε, ε1.2,
ε1.5

|log ε|

}}

,

e2 =
{

ε,
{

ε0.2,
ε0.5

|log ε|
, ε,

ε1.2

|log ε|
, ε2

}}

,

e3 =
{

ε,
{

ε0.2, ε0.5, ε,
ε2.5

|log ε|
,

ε3

|log ε|

}}

,

e4 =
{

ε,
{

ε0.2, ε0.5, ε,
ε1.5

|log ε|
, ε2.5

}}

,

e5 =
{

ε,
{ ε0.2

|log ε|
, ε0.5, ε, ε2,

ε2.5

|log ε|

}}

,

e6 =
{

ε,
{

ε0.2, ε0.5, ε,
ε2

|log ε|
, ε2.5

}}

.

We see that ej ∈ J 5∼3
wsep,j for every j ∈ [[5]] but that e6 does not belong to any J 5∼3

wsep,j ,

j ∈ [[5]], even though it belongs to J 5∼3
wsep.

3.3. The homogenization procedure. Let S = (0, 1) and define H1
#(S;V, V ′),

V being any Banach space with topological dual V ′, as the space of functions u

satisfying u ∈ L2
#(S;V ) and (d/ds)u ∈ L2

#(S;V ′). In order to prove Theorem 3.6—

our preliminary homogenization result—we first need the lemmas below.

Lemma 3.4. The tensor product space (C∞
# (Y )/R)⊗C∞

# (S) is dense in the space

H1
#(S;W ,W ′).

P r o o f. This is just Proposition 4.6 in [19] in which E and V correspond to the

present paper’s (C∞
# (Y )/R) ⊗ C∞

# (S) and H1
#(S;W ,W ′), respectively. �
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Lemma 3.5. Suppose that u, v ∈ H1
#(S;W ,W ′). Then

〈∂su, v〉L2
#(S;W′),L2

#(S;W) + 〈∂sv, u〉L2
#(S;W′),L2

#(S;W) = 0

holds. In particular,

〈∂su, u〉L2
#(S;W′),L2

#(S;W) = 0.

P r o o f. This follows immediately from Corollary 4.1 in [19]. �

Introduce the following notation. We write S[[j1,j2]] = Sj1 × . . . × Sj2 and let

s[[j1,j2]] ∈ S[[j1,j2]] be the corresponding local variable. The Lebesgue measures on the

introduced local set is written accordingly.

Let us now state the theorem.

Theorem 3.6. Let k ∈ [[m]]. Suppose that the pair e = (ε, {ε′j}
m
j=1) of lists of

spatial and temporal scale functions belongs to
1+2(m−k)

⋃

i=1

J m∼k
wsep,i. Let {uε} be the se-

quence of weak solutions in H1(0, T ;H1
0 (Ω), H−1(Ω)) to the evolution problem (1.1)

with a : ΩT × R
N+m × R

N → R
N satisfying the structure conditions (I)–(V). Then

uε → u in L2(ΩT ),(3.1)

uε ⇀ u in L2(0, T ;H1
0 (Ω)),(3.2)

and

(3.3) ∇uε
(2,m+1)
−−−⇀ ∇u+ ∇yu1,

where u ∈ H1(0, T ;H1
0(Ω), H−1(Ω)) and u1 ∈ L2(ΩT ×Sm;W). Here u is the unique

weak solution to the homogenized problem (2.2) with the homogenized flux

b : ΩT × R
N → R

N

given by

(3.4) b(x, t;∇u) =

∫

Y1m

a(x, t, y, sm;∇u + ∇yu1) dsm dy.

Moreover, we have the following characterization of u1:

• If e ∈ J m∼k
wsep,1 then the function u1 is the unique weak solution to the local

problem

(3.5) −∇y · a(x, t, y, sm;∇u+ ∇yu1) = 0.
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• If e ∈ J m∼k
wsep,2, assuming u1 ∈ L2(ΩT × Sm−1;H1

#(Sm;W ,W ′)), then the func-

tion u1 is the unique weak solution to the local problem

(3.6) ∂sm
u1(x, t, y, sm) −∇y · a(x, t, y, sm;∇u+ ∇yu1) = 0.

• If e ∈ J m∼k

wsep,2+l−k
for some l ∈ [[k + 1,m]], provided k ∈ [[m− 1]], then the

function u1 is the unique weak solution to the system of local problems

(3.7)

{

−∇y ·
∫

S[[l,m]] a(x, t, y, sm;∇u+ ∇yu1) ds[[l̊ ,m]] = 0,

∀ i ∈ [[l̊ , m]] ∂si
u1(x, t, y, sm) = 0.

• If e ∈ Jm∼k
wsep,1+m+l̊−2k for some l̊ ∈ [[k + 2,m]], provided k ∈ [[m− 2]] and

assuming u1 ∈ L2(ΩT ×S l̊−2 ×S[[l̊ ,m]];H1
#(Sl̊−1;W ,W ′)), then the function u1

is the unique weak solution to the system of local problems

(3.8)

{

∂sl̊ −1
u1(x, t, y, sm) −∇y ·

∫

S[[l̊ ,m]] a(x, t, y, sm;∇u+ ∇yu1) ds[[l̊ ,m]] = 0,

∀ i ∈ [[l̊ , m]] ∂si
u1(x, t, y, sm) = 0.

P r o o f. Since a fulfils (I)–(V) we can use Proposition 2.15 for the sequence {uε}

of weak solutions; we have ensured uniform boundedness inH1(0, T ;H1
0(Ω),H−1(Ω)).

We can then employ Theorem 2.10 with n = 1 obtaining, up to a subsequence, ex-

actly the claimed convergences (3.1)–(3.3) where u ∈ H1(0, T ;H1
0 (Ω), H−1(Ω)) and

u1 ∈ L2(ΩT × Sm;W). Consider the sequence {aε} defined according to

aε(x, t) = aε(x, t;∇uε) = a
(

x, t,
x

ε
, tε

m;∇uε

)

, (x, t) ∈ ΩT .

We have that {aε} is uniformly bounded in L2(ΩT )N which can be shown by using (I)

and (V), the triangle inequality and Proposition 2.15; see the proof of Theorem 37

in [20] for details. By Theorem 2.9 (with n = 1) we then know that, up to a

subsequence,

(3.9) aε
(2,m+1)
−−−⇀ a0

for some a0 ∈ L2(ΩT × Y1m)N .

Recall the weak form (2.4) with n = 1 of the evolution problem, i.e.,

〈 ∂

∂t
uε, ψ

〉

X′,X
+

∫

ΩT

aε(x, t) · ∇ψ(x, t) dxdt(3.10)

=

∫

ΩT

f(x, t)ψ(x, t) dxdt

for every ψ ∈ L2(0, T ;H1
0(Ω)).
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Choose an arbitrary ψ ∈ H1
0 (Ω) ⊙ D(0, T ). Then we can shift the weak temporal

derivative ∂/∂t in (3.10) from acting on uε to acting on ψ instead, i.e.,
∫

ΩT

(

−uε(x, t)
∂

∂t
ψ(x, t) + aε(x, t) · ∇ψ(x, t)

)

dxdt(3.11)

=

∫

ΩT

f(x, t)ψ(x, t) dxdt.

Passing to the limit—using (3.2) and (3.9) on the first and second terms on the

left-hand side, respectively, and letting ∂/∂t to act on u again—we obtain, up to a

subsequence,

〈 ∂

∂t
u, ψ

〉

X′,X
+

∫

ΩT

∫

Y1m

a0(x, t, y, sm) dsm dy · ∇ψ(x, t) dxdt

=

∫

ΩT

f(x, t)ψ(x, t) dxdt

for any ψ ∈ L2(0, T ;H1
0 (Ω)) by density. We have obtained the weak form of the

homogenized evolution problem (2.2) with the homogenized flux given by

b(x, t;∇u) =

∫

Y1m

a0(x, t, y, sm) dsm dy.

What remains is to find the local problems for u1 and to give the limit a0 in

terms of a. We will first extract the pre-local-problems, i.e., the problems expressed

in terms of a0 which become the local problems once a0 is given in terms of a.

Introduce arbitrary

ωl ∈ D(Ω) ⊙D(0, T ) ⊙ (C∞
# (Y )/R) ⊙

l
∏

i=1

C∞
# (Si), l ∈ [[m]].

For each l ∈ [[m]] we define

ωε
l (x, t) = ωl(x, t,x

ε
1l), (x, t) ∈ ΩT .

Let {rε} be a sequence of positive numbers such that rε → 0. We will now study

sequences of test functions {ψε} in (3.11) such that

ψε
l (x, t) = rεω

ε
l (x, t), (x, t) ∈ ΩT ,

with appropriate choices of {rε} and l in order to extract the pre-local-problems.

For the sequence {ψε
l }, l ∈ [[m]], of test functions given above, (3.11) becomes in the

limit

(3.12) lim
ε→0

∫

ΩT

(

−uε(x, t)

l
∑

i=1

rε
ε′i
∂si
ωε

l (x, t) + aε(x, t) ·
rε
ε′k

∇yω
ε
l (x, t)

)

dxdt = 0
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recalling that ε′k = ε. For the pre-local-problems, (3.12) will be our point of depar-

ture.

Suppose that the real sequence {rε/ε′l} is bounded, then the limit equation be-

comes

(3.13) lim
ε→0

∫

ΩT

(

−uε(x, t)
rε
ε′l
∂sl
ωε

l (x, t) + aε(x, t) ·
rε
ε′k

∇yω
ε
l (x, t)

)

dxdt = 0.

Choose rε = ε′k, which implies that {rε/ε
′
l} = {ε′k/ε

′
l} is bounded for l ∈ [[k]]. Then

(3.13) becomes

(3.14) lim
ε→0

∫

ΩT

(

−uε(x, t)
ε′k
ε′l
∂sl
ωε

l (x, t) + aε(x, t) · ∇yω
ε
l (x, t)

)

dxdt = 0.

If l ∈ [[k − 1]], provided k ∈ [[2,m]], the first term tends to 0, and we get in this case

lim
ε→0

∫

ΩT

aε(x, t) · ∇yω
ε
l (x, t) dxdt = 0,

which after taking the limit can be written

(3.15)

∫

ΩT

∫

Y1m

a0(x, t, y, sm) · ∇yωl(x, t, y, sl) dsm dy dxdt = 0,

i.e.,

∫

ΩT

∫

Y1l

∫

S[[l+1,m]]

a0(x, t, y, sm) ds[[l+1,m]] · ∇yωl(x, t, y, sl) dsl dy dxdt = 0.

Suppose v1 ∈ C∞
# (Y )/R is the factor of ωl with respect to the y variable. Then,

(3.16)

∫

Y

∫

S[[l+1,m]]

a0(x, t, y, sm) ds[[l+1,m]] · ∇yv1(y) dy = 0

a.e. on ΩT × Sl. If l = k the limit equation (3.14) instead reduces to

lim
ε→0

∫

ΩT

(−uε(x, t)∂sk
ωε

k(x, t) + aε(x, t) · ∇yω
ε
k(x, t)) dxdt = 0,

which in the limit becomes

∫

ΩT

∫

Y1m

(−u(x, t)∂sk
ωk(x, t, y, sk)

+ a0(x, t, y, sm) · ∇yωk(x, t, y, sk)) dsm dy dxdt = 0.
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The first term gives no contribution, since ωk is Sk-periodic in the sk variable.

Progressing like in the case l ∈ [[k − 1]] we finally arrive at (3.16) which now also

includes l = k, i.e., (3.16) holds for all l ∈ [[k]]. But it is clear that (3.16) holding for

l = k implies that it holds also for any l ∈ [[k − 1]] provided k ∈ [[2,m]]. Thus, we

only have to consider (3.16) for l = k, i.e., we have so far obtained

(3.17)

∫

Y

∫

S[[k+1,m]]

a0(x, t, y, sm) ds[[k+1,m]] · ∇yv1(y) dy = 0

for all v1 ∈ C∞
# (Y )/R. It should be emphasized here that this equation is always true

for J m∼k
wsep and is not confined to any particular subset J

m∼k
wsep,j , j ∈ [[1 + 2(m− k)]].

If we study the limit equation (3.12) extracting a factor ε−1 in the first term we

obtain

lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)

l
∑

i=1

rεε
′
k

ε′i
∂si
ωε

l (x, t) + aε(x, t) ·
rε
ε′k

∇yω
ε
l (x, t)

)

dxdt = 0,

where we have recalled ε′k = ε. Suppose that {rεε′k/ε
′
l} is bounded (in R), it is then

clear that the limit equation above reduces to

(3.18) lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)

rεε
′
k

ε′l
∂sl
ωε

l (x, t) + aε(x, t) ·
rε
ε′k

∇yω
ε
l (x, t)

)

dxdt = 0.

• Suppose (ε, {ε′j}
m
j=1) ∈ Jm∼k

wsep,1. By definition this means that (ε, {ε′j}) ∈ Jm∼k
wsep

and ε′2k /ε
′
m must tend to zero. Consider first ε

′
m ∼ ε′k, i.e., k = m. We have

already extracted (3.17) which in this case, k = m, is merely

(3.19)

∫

Y

a0(x, t, y, sm) · ∇yv1(y) dy = 0;

this is the pre-local-problem. Consider now the situation ε′m 6∼ ε′k, i.e., k ∈

[[m− 1]] requiring m > 1. We first note that we have already extracted (3.17).

We want to employ (3.18) for l ∈ [[k + 1,m]]. Choose rε = ε′k, and we get that

(3.20)
rεε

′
k

ε′l
=
ε′2k
ε′l

=
ε′2k
ε′m

ε′m
ε′l

→ 0.

We can now use (3.18) yielding

lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)

ε′2k
ε′l
∂sl
ωε

l (x, t) + aε(x, t) · ∇yω
ε
l (x, t)

)

dxdt = 0,
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which in the limit becomes (3.15) due to Theorem 2.11 and (3.20). Hence, we

have again (3.16) but for l ∈ [[k + 1,m]]. Apparently we end up at the pre-local-

problem (3.19) again since (3.16) in the case l = m implies that (3.16) holds

automatically for any l ∈ [[m− 1]].

• Suppose (ε, {ε′j}
m
j=1) ∈ Jm∼k

wsep,2. By definition this means that (ε, {ε′j}) ∈ Jm∼k
wsep

and ε′m ∼ ε′2k . Let l = m in (3.18). Choose rε = ε′k again, giving rεε
′
k/ε

′
l =

ε′2k /ε
′
m. We can then write (3.18) as

lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)

ε′2k
ε′m

∂sl
ωε

l (x, t) + aε(x, t) · ∇yω
ε
l (x, t)

)

dxdt = 0,

and by Theorem 2.11 together with the assumption ε′m ∼ ε′2k we arrive at the

pre-local-problem, a.e. on ΩT × Sm−1,
∫

Y

∫

Sm

(−u1(x, t, y, sm)v1(y)∂sm
cm(sm)

+ a0(x, t, y, sm) · ∇yv1(y)cm(sm)) dsm dy = 0

for all v1 ∈ C∞
# (Y )/R and all cm ∈ C∞

# (Sm).

• Suppose (ε, {ε′j}
m
j=1) ∈ Jm∼k

wsep,2+l−k
for some l ∈ [[k + 1,m]] where k ∈ [[m− 1]]

is required. By definition this means that (ε, {ε′j}) ∈ J m∼k
wsep and ε

′

l
/ε′2k → 0 but

ε′
l−1

/ε′2k → ∞. We first note that we have already extracted (3.17) which at

this point carries at least one integral, independent of l. Choose rε = ε′i/ε
′
k,

i ∈ [[l,m]]. Apparently, rε → 0 is guaranteed since i ∈ [[k + 1,m]]. Trivially,

{rεε′k/ε
′
i} is bounded. Finally,

(3.21)
rε
ε′k

=
ε′i
ε′

l

ε′
l

ε′2k
→ 0

by assumption and separatedness. Hence, we can utilize (3.18) with l = i giving

lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)∂si

ωε
i (x, t) + aε(x, t) ·

ε′i
ε′2k

∇yω
ε
i (x, t)

)

dxdt = 0,

and taking the limit by using Theorem 2.11 together with (3.21) we arrive at

the pre-local-problem

(3.22) −

∫

Si

u1(x, t, y, sm)∂si
ci(si) dsi = 0 for all ci ∈ C∞

# (Si), i ∈ [[l,m]].

Choose now rε = ε′k and let i ∈ [[k + 1, l− 1]] which requires l ∈ [[k + 2,m]],

which in turn requires k ∈ [[m− 2]]. Then, by assumption and separatedness,

(3.23)
rεε

′
k

ε′i
=

ε′2k
ε′

l−1

ε′
l−1

ε′i
→ 0.
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We have shown that we can employ (3.18) with l = i, giving

lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)

ε′2k
ε′

l−1

ε′
l−1

ε′i
∂si
ωε

i (x, t) + aε(x, t) · ∇yω
ε
i (x, t)

)

dxdt = 0

for i ∈ [[k + 1, l− 1]]. Taking the limit by using Theorem 2.11 and (3.23), we

get the second pre-local-problem

(3.24)

∫

Y

∫

S[[l,m]]

a0(x, t, y, sm) ds[[l,m]] · ∇yv1(y) dy = 0,

since the case l = k + 1 is taken care of by (3.17). The extracted pre-local-

problems are (3.22) and (3.24) in this case.

• Suppose (ε, {ε′j}
m
j=1) ∈ J m∼k

wsep,1+m+l̊−2k for some l̊ ∈ [[k + 2,m]] where k ∈

[[m− 2]] is required. By definition this means that (ε, {ε′j}) ∈ J m∼k
wsep and ε

′
l̊−1 ∼

ε′2k . Choose rε = ε′i/ε
′
k, i ∈ [[l̊ , m]]. It is clearly guaranteed that rε → 0, since

i ∈ [[k + 2,m]]. Moreover, it is trivial that {rεε′k/ε
′
i} is bounded. Finally,

(3.25)
rε
ε′k

=
ε′i
ε′2k

=
ε′i
ε′l̊−1

ε′l̊−1

ε′2k
→ 0

by assumption and separatedness. Hence, we can utilize (3.18) with l = i giving

lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)∂si

ωε
i (x, t) + aε(x, t) ·

ε′i
ε′2k

∇yω
ε
i (x, t)

)

dxdt = 0,

and taking the limit by using Theorem 2.11 and (3.25), we arrive at the pre-

local-problem

(3.26) −

∫

Si

u1(x, t, y, sm)∂si
ci(si) dsi = 0 for all ci ∈ C∞

# (Si), i ∈ [[l̊ , m]].

In particular, the s[[l̊ ,m]] independence property (3.26) implies that

(3.27)

∫

S[[l̊ ,m]]

u1(x, t, y, sm) ds[[l̊ ,m]] = u1(x, t, y, sm)

holds a.e. on ΩT × Y × Sm. For the second pre-local-problem, choose rε = ε′k
and let i = l̊ − 1. Then, by assumption,

(3.28)
rεε

′
k

ε′i
=

ε′2k
ε′l̊−1

→ 1.
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We have shown that we can employ (3.18), giving

lim
ε→0

∫

ΩT

(

−
1

ε
uε(x, t)

ε′2k
ε′l̊−1

∂sl̊ −1
ωε

l̊−1(x, t) + aε(x, t) · ∇yω
ε
l̊−1(x, t)

)

dxdt = 0.

Taking the limit by using Theorem 2.11 and (3.28) and then utilizing (3.27), we

get

∫

Y

∫

Sl̊ −1

(

−u1(x, t, y, sm)v1(y)∂sl̊ −1
cl̊−1(sl̊−1)(3.29)

+

∫

S[[l̊ ,m]]

a0(x, t, y, sm) ds[[l̊ ,m]]∇yv1(y)cl̊−1(sl̊−1)
)

dsl̊−1 dy = 0

a.e. on ΩT × S l̊−2 × S[[l̊ ,m]], which is our second pre-local-problem. Concluding

the present case, the extracted pre-local-problems are (3.26) and (3.29).

What is left to do is to characterize a0 in terms of a such that the pre-local-

problems become true local problems, i.e., to show that

(3.30) a0(x, t, y, sm) = a(x, t, y, sm;∇u+ ∇yu1), a.e. on ΩT × Y1m.

The characterization (3.30) would clearly follow from the inequality

∫

ΩT

∫

Y1m

((−a0(x, t, y, sm) + a(x, t, y, sm;∇u+ ∇yu1 + δc))(3.31)

× δc(x, t, y, sm)) dsm dy dxdt > 0,

holding for every δ > 0 and every c ∈ D(ΩT ; C∞
# (Y1m)N ), by first dividing (3.31)

with respect to δ, then letting δ → 0, and finally using the Variational Lemma.

Equation (3.30) establishes an HMP -limit b of the form (3.4). Since u is the unique

solution to the homogenized equation and u1 is the unique solution to the local

problems, the convergences (3.1)–(3.3) hold not only for the extracted subsequence

but for the whole sequence as well.

In order to prove (3.31) and thus complete the proof, we introduced a se-

quence {pµ}∞µ=1 in D(ΩT ; C∞
# (Y1m)N ) of Evans’s perturbed test functions (see [4])

according to pµ = πµ + π1µ + δc, µ ∈ Z+, where δ and c are as above. For each

µ ∈ Z+, the functions πµ and π1µ belong to D(ΩT )N and D(ΩT ; C∞
# (Y1m)N ), re-

spectively. The sequences {πµ}
∞
µ=1 and {π1µ}

∞
µ=1 are assumed to tend to ∇u and

∇yu1, respectively, both in L
2 and pointwise. We then consider {pε

µ} defined by

pε
µ(x, t) = pµ(x, t, x/ε, tε

m). By structure condition (IV),

(3.32)
(

a
(

x, t,
x

ε
, tε

m;∇uε

)

− a
(

x, t,
x

ε
, tε

m; pε
µ

))

· (∇uε(x, t) − pε
µ(x, t)) > 0
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for (x, t) ∈ ΩT . By first integrating (3.32) over ΩT , then utilizing (3.10) followed by

letting ε→ 0 and using the inequality

〈 ∂

∂t
u, u

〉

X′,X
6 lim inf

ε→0

〈 ∂

∂t
uε, uε

〉

X′,X

(see, e.g., the end of the proof of Theorem 3.1 in [18]), then letting µ → ∞ and finally

employing Lebesgue’s Generalized Dominated Convergence Theorem, we arrive at

∫

ΩT

∫

Y1m

(−a0(x, t, y, sm) · ∇yu1(x, t, y, sm) − a0(x, t, y, sm) · δc(x, t, y, sm)(3.33)

+ a(x, t, y, sm;∇u+ ∇yu1 + δc)δc(x, t, y, sm)) dsm dy dxdt > 0.

In order to lose the first term in the integrand of (3.33), we simply employ the

pre-local-problems. Note that in the resonant cases we need to employ the density

result of Lemma 3.4 and the duality pairing result of Lemma 3.5 using the special

assumptions on u1. Hence, we have shown (3.31) and the proof is complete. �

For the details that have been left out in the proof above—mainly in the charac-

terization of a0 in terms of a—see the proof of Theorem 37 in the detailed e-print

version [20] of this paper.

R em a r k 3.7. We have two remarks concerning the theorem.

(i) The assumption u1 ∈ L2(ΩT × Sm−1;H1
#(Sm;W ,W ′)) in the slow resonant

case merely amounts to the hypothesis ∂sm
u1 ∈ L2(ΩT × Sm−1;L2

#(Sm;W ′)), since

we already know u1 ∈ L2(ΩT × Sm−1;L2
#(Sm;W)) as a fact due to Theorem 2.10

(with n = 1). Of course, we can make a similar remark concerning u1 in the rapid

resonant case Jm∼k
wsep,1+m+l̊−2k, l̊ ∈ [[k + 2,m]].

(ii) Note that in the formulation of the theorem we employ strongly rather than

weakly formulated versions of the local problems. This convention will be used in

the remaining homogenization result, Theorem 3.8, as well.

Fix k ∈ [[m]]0. Let J m4k
wsep be the set of all pairs (ε, {ε′j}

m
j=1) of lists in J 1m

wsep such

that it either holds that ε′k ∼ ε as before, or that











{ε, ε′1, . . . , ε
′
m} if k = 0,

{ε′1, . . . , ε
′
k, ε, ε

′
k+1, . . . , ε

′
m} if k ∈ [[m− 1]],

{ε′1, . . . , ε
′
m, ε} if k = m

is a well-separated list of scale functions. Hence, in the latter case ε′k 6∼ ε, ε < ε′k for

small enough ε, motivating the notation “4 k”. This could be read as “the spatial
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scale is asymptotically equal to or less than the kth temporal scale”. Introduce the

collection {Jm4k
wsep,i}

1+2(m−k)
i=1 of 1 + 2(m− k) subsets of J m4k

wsep according to

J m4k
wsep,1 =

{

(ε, {ε′j}
m
j=1) ∈ J m4k

wsep :
ε2

ε′m
→ 0

}

,

J m4k
wsep,2 =

{

(ε, {ε′j}
m
j=1

)

∈ Jm4k
wsep : ε′m ∼ ε2

}

,

J m4k
wsep,2+i−k =

{

(ε, {ε′j}
m
j=1) ∈ J m4k

wsep :
ε′i
ε2

→ 0 but
ε′i−1

ε2
→ ∞

}

and

J m4k
wsep,1+m+i̊−2k =

{

(ε, {ε′j}
m
j=1) ∈ J m4k

wsep : ε′i̊−1 ∼ ε2
}

for i ∈ [[k + 1,m]], (k, i) 6= (0, 1), and i̊ ∈ [[k + 2,m]]; for (k, i) = (0, 1) we define

(3.34) Jm40
wsep,3 =

{

(ε, {ε′j}
m
j=1) ∈ J m40

wsep :
ε′1
ε2

→ 0
}

.

Actually, J m4k
wsep,3 does not really need the second condition, i.e. the non-convergence

to 0, since it is already implied by the fact that we are in Jm4k
wsep . Since there does not

exist any “ε′0”, we note that we need to impose a special definition (3.34) for J
m40
wsep,3

without the extra condition. The collection {Jm4k
wsep,i}

1+2(m−k)
i=1 of subsets of Jm4k

wsep is

clearly mutually disjoint. Note that if k = m, the introduced collection of subsets

of Jm4m
wsep reduces to merely {Jm4m

wsep,1}.

In Theorem 3.8 below, the main result of this paper and appearing as Corollary 40

in [20], we have a straightforward generalization of Theorem 3.6 where k may be zero

and the rather restrictive assumption of asymptotic equality is everywhere replaced

by the relaxed assumption of asymptotic inequality as defined above.

Theorem 3.8. Let k ∈ [[m]]0. Suppose that the pair e = (ε, {ε′j}
m
j=1) of lists of

spatial and temporal scale functions belongs to
1+2(m−k)

⋃

i=1

J m4k
wsep,i. Let {uε} be the se-

quence of weak solutions in H1(0, T ;H1
0 (Ω), H−1(Ω)) to the evolution problem (1.1)

with a : ΩT × R
N+m × R

N → R
N satisfying the structure conditions (I)–(V). Then

convergences on the form (3.1)–(3.3) hold, where u ∈ H1(0, T ;H1
0 (Ω), H−1(Ω)) and

u1 ∈ L2(ΩT × Sm;W). Here u is the unique weak solution to the homogenized

problem (2.2) with the homogenized flux b : ΩT ×R
N → R

N given in the form (3.4).

Moreover, we have the following characterization of u1:

• If e ∈ Jm4k
wsep,1 then the function u1 is the unique weak solution to a local problem

of the form (3.5).
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• If e ∈ Jm4k
wsep,2, assuming u1 ∈ L2(ΩT ×Sm−1;H1

#(Sm;W ,W ′)), then the function u1

is the unique weak solution to a local problem of the form (3.6).

• If e ∈ J m4k

wsep,2+l−k
for some l ∈ [[k + 1,m]], provided k ∈ [[m− 1]]0, then the

function u1 is the unique weak solution to a system of local problems of the

form (3.7).

• If e ∈ J m4k
wsep,1+m+l̊−2k for some l̊ ∈ [[k + 2,m]], provided k ∈ [[m− 2]]0 and assuming

u1 ∈ L2(ΩT ×S l̊−2×S[[l̊ ,m]];H1
#(Sl̊−1;W ,W ′)), then the function u1 is the unique

weak solution to a system of local problems of the form (3.8).

P r o o f. To prove the theorem we first have to consider the case of strict asymp-

totic inequality. We then introduce an extra temporal scale function coinciding with

the spatial scale function ε in order to transform the problem to the same form as

in Theorem 3.6 which is then applied. For details, see the proof of Theorem 39

in [20]. Theorem 3.8 follows directly from this result by taking into consideration

also asymptotic equality employing Theorem 3.6 again. �

R em a r k 3.9. Theorem 3.8 can only handle the subset
1+2(m−k)

⋃

i=1

J m4k
wsep,i of J

m4k
wsep .

The conclusion of Remark 3.2 is true also in the setting of Theorem 3.8 though,

i.e., the collection {Pm4k
i }

1+2(m−k)
i=1 forms a partition of Pm4k, where Pm4k is the

subset of J m4k
wsep with temporal scale functions expressed as power functions, and

Pm4k
i is the corresponding subset of J m4k

wsep,i for every i ∈ [[1 + 2(m− k)]].
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