Previous |  Up |  Next

Article

Keywords:
phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential
Summary:
Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.
References:
[1] Aizicovici, S., Feireisl, E., Issard-Roch, F.: Long-time convergence of solutions to a phase-field system. Math. Methods Appl. Sci. 24 (2001), 277-287. DOI 10.1002/mma.215 | MR 1818896 | Zbl 0984.35026
[2] Brochet, D., Hilhorst, D., Chen, X.: Finite dimensional exponential attractors for the phase-field model. Appl. Anal. 49 (1993), 197-212. DOI 10.1080/00036819108840173 | MR 1289743
[3] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer New York (1996). MR 1411908 | Zbl 0951.74002
[4] Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92 (1986), 205-245. DOI 10.1007/BF00254827 | MR 0816623 | Zbl 0608.35080
[5] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 2 (1958), 258-267. DOI 10.1063/1.1744102
[6] Cherfils, L., Gatti, S., Miranville, A.: Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials. J. Math. Anal. Appl. 343 (2008), 557-566 Corrigendum, J. Math. Anal. Appl. 348 (2008), 1029-1030. DOI 10.1016/j.jmaa.2008.01.077 | MR 2412150 | Zbl 1160.35433
[7] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv. Math. Sci. Appl. 17 (2007), 107-129. MR 2337372 | Zbl 1145.35042
[8] Cherfils, L., Miranville, A.: On the Caginalp system with dynamic boundary conditions and singular potentials. Appl. Math. 54 (2009), 89-115. DOI 10.1007/s10492-009-0008-6 | MR 2491850 | Zbl 1212.35012
[9] Chill, R., Fašangovà, E., Prüss, J.: Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equation with dynamic boundary conditions. Math. Nachr. 279 (2006), 1448-1462. DOI 10.1002/mana.200410431 | MR 2269249
[10] Christov, C. I., Jordan, P. M.: Heat conduction paradox involving second-sound propagation in moving media. Phys. Rev. Lett. 94 (2005), 154301. DOI 10.1103/PhysRevLett.94.154301
[11] Elliott, C. M., Zheng, S.: Global existence and stability of solutions to the phase field equations. In: Free boundary value problems (Proc. Conf. Oberwolfach, 1989). Int. Ser. Numer. Math. 95 (1990), 46-58. MR 1111021
[12] Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195 (1998), 77-114. DOI 10.1002/mana.19981950106 | MR 1654677 | Zbl 0918.35064
[13] Gal, C. G., Grasselli, M.: The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 22 (2008), 1009-1040. DOI 10.3934/dcds.2008.22.1009 | MR 2434980 | Zbl 1160.35353
[14] Gatti, S., Miranville, A.: Asymptotic behavior of a phase-field system with dynamic boundary conditions. In: Differential Equations. Inverse and Direct Problems. Proc. Workshop ``Evolution Equations: Inverse and Direct Problems'', Cortona, June 21-25, 2004. A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini, A. Lorenzi CRC Press Boca Raton (2006), 149-170. DOI 10.1201/9781420011135.ch9 | MR 2275977 | Zbl 1123.35310
[15] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280 (2007), 1475-1509. DOI 10.1002/mana.200510560 | MR 2354975 | Zbl 1133.35017
[16] Grasselli, M., Miranville, A., Schimperna, G.: The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discr. Contin. Dyn. Syst. 28 (2010), 67-98. DOI 10.3934/dcds.2010.28.67 | MR 2629473 | Zbl 1194.35074
[17] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25 (2006), 51-72. DOI 10.4171/ZAA/1277 | MR 2216881 | Zbl 1128.35021
[18] Grasselli, M., Pata, V.: Existence of a universal attractor for a fully hyperbolic phase-field system. J. Evol. Equ. 4 (2004), 27-51. DOI 10.1007/s00028-003-0074-2 | MR 2047305 | Zbl 1063.35038
[19] Green, A. E., Naghdi, P. M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432 (1991), 171-194. DOI 10.1098/rspa.1991.0012 | MR 1116956 | Zbl 0726.73004
[20] Jiang, J.: Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law. J. Math. Anal. Appl. 341 (2008), 149-169. DOI 10.1016/j.jmaa.2007.09.041 | MR 2394072 | Zbl 1139.35019
[21] Jiang, J.: Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law. Math. Methods Appl. Sci. 32 (2009), 1156-1182. DOI 10.1002/mma.1092 | MR 2523568 | Zbl 1180.35107
[22] Kufner, A., John, O., Fučík, S.: Function Spaces. Noordhoff International Publishing/Academia Leyden/Prague (1977). MR 0482102
[23] Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law. Nonlinear Anal., Theorey Methods Appl. 71 (2009), 2278-2290. DOI 10.1016/j.na.2009.01.061 | MR 2524435 | Zbl 1167.35304
[24] Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system. Appl. Anal. 88 (2009), 877-894. DOI 10.1080/00036810903042182 | MR 2548940 | Zbl 1178.35194
[25] Miranville, A., Quintanilla, R.: A phase-field model based on a three-phase-lag heat conduction. Appl. Math. Optim. 63 (2011), 133-150. DOI 10.1007/s00245-010-9114-9 | MR 2746733 | Zbl 1213.35111
[26] Miranville, A., Quintanilla, R.: A type III phase-field system with a logarithmic potential. Appl. Math. Lett. 24 (2011), 1003-1008. DOI 10.1016/j.aml.2011.01.016 | MR 2776176 | Zbl 1213.35187
[27] Miranville, A., Zelik, S.: Robust exponential attractors for singularly perturbed phase-field type equations. Electron. J. Differ. Equ. (2002), 1-28 Paper No. 63, electronic only. MR 1911930 | Zbl 1004.35024
[28] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545-582. DOI 10.1002/mma.464 | MR 2041814 | Zbl 1050.35113
[29] Miranville, A., Zelik, S.: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discr. Contin. Dyn. Syst. 28 (2010), 275-310. DOI 10.3934/dcds.2010.28.275 | MR 2629483 | Zbl 1203.35046
[30] Choudhuri, S. K. Roy: A thermoelastic three-phase-lag model. J. Thermal Stresses 30 (2007), 231-238. DOI 10.1080/01495730601130919
[31] Zhang, Z.: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions. Commun. Pure Appl. Anal. 4 (2005), 683-693. DOI 10.3934/cpaa.2005.4.683 | MR 2167193 | Zbl 1082.35033
Partner of
EuDML logo