Previous |  Up |  Next

Article

Keywords:
lower bound; weighted sequence space; Hausdorff matrices; Euler matrices; Cesàro matrices; Hölder matrices; Gamma matrices
Summary:
Let $A=(a_{n,k})_{n,k\geq 1}$ be a non-negative matrix. Denote by $L_{v,p,q,F}(A)$ the supremum of those $L$ that satisfy the inequality $$ \|Ax\|_{v,q,F} \ge L\| x\|_{v,p,F}, $$ where $x\geq 0$ and $x\in l_p(v,F)$ and also $v=(v_n)_{n=1}^\infty $ is an increasing, non-negative sequence of real numbers. If $p=q$, we use $L_{v,p,F}(A)$ instead of $L_{v,p,p,F}(A)$. In this paper we obtain a Hardy type formula for $L_{v,p,q,F}(H_\mu )$, where $H_\mu $ is a Hausdorff matrix and $0<q\leq p\leq 1$. Another purpose of this paper is to establish a lower bound for $\|A_{W}^{NM} \|_{v,p,F}$, where $A_{W}^{NM}$ is the Nörlund matrix associated with the sequence $W=\{w_n\}_{n=1}^\infty $ and $1<p<\infty $. Our results generalize some works of Bennett, Jameson and present authors.
References:
[1] Azimi, P.: A new class of Banach sequence spaces. Bull. Iran. Math. Soc. 28 (2002), 57-68. MR 1992259 | Zbl 1035.46006
[2] Bennett, G.: Inequalities complimentary to Hardy. Q. J. Math. Oxf. II, Ser. 49 (1998), 395-432. DOI 10.1093/qmathj/49.4.395 | MR 1652236 | Zbl 0929.26013
[3] Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 576 (1996), 1-13. MR 1317938 | Zbl 0857.26009
[4] Bennett, G.: Lower bounds for matrices. Linear Algebra Appl. 82 (1986), 81-98. MR 0858964 | Zbl 0601.15014
[5] Borwein, D.: Nörlund operators on $l_p$. Can. Math. Bull. 36 (1993), 8-14. DOI 10.4153/CMB-1993-002-x | MR 1205888
[6] Chen, Ch.-P., Wang, K.-Z.: Lower bounds of Copson type for Hausdorff matrices. II. Linear Algebra Appl. 422 (2007), 563-573. DOI 10.1016/j.laa.2006.11.015 | MR 2305141 | Zbl 1135.15015
[7] Foroutannia, D.: Upper bound and lower bound for matrix operators on weighted sequence space. PhD. Thesis Zahedan (2007).
[8] Jameson, G. J. O., Lashkaripour, R.: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces. JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Electronic only. MR 1888921 | Zbl 1021.47019
[9] jun., P. D. Johnson, Mohapatra, R. N., Ross, D.: Bounds for the operator norms of some Nörlund matrices. Proc. Am. Math. Soc. 124 (1996), 543-547. DOI 10.1090/S0002-9939-96-03081-X | MR 1301506 | Zbl 0846.40007
[10] Lashkaripour, R., Foroutannia, D.: Lower bounds for matrices on block weighted sequence spaces. I. Czech. Math. J. 59 (134) (2009), 81-94. DOI 10.1007/s10587-009-0006-6 | MR 2486617 | Zbl 1217.47065
[11] Lashkaripour, R., Foroutannia, D.: Computation of matrix operators bounds with applying new extension of Hardy inequality on weighted sequence spaces. I. Lobachevskii J. Math. 30 (2009), 40-45. DOI 10.1134/S1995080209010065 | MR 2506053 | Zbl 1177.26039
[12] Lashkaripour, R., Talebi, G.: Lower bound of Copson type for Hausdorff matrices on weighted sequence spaces. J. Sci., Islam. Repub. Iran 22 (2011), 153-157. MR 2884149
[13] Lashkaripour, R., Talebi, G.: Lower bound for the norm of lower triangular matrices on block weighted sequence spaces. J. Math. Inequal. 5 (2011), 33-38. DOI 10.7153/jmi-05-04 | MR 2799056 | Zbl 1211.26018
[14] Lashkaripour, R., Talebi, G.: Bounds for the operator norms of some Nörlund matrices on weighted sequence spaces. Preprint.
Partner of
EuDML logo