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Abstract. Let A = (an,k)n,k>1 be a non-negative matrix. Denote by Lv,p,q,F (A) the
supremum of those L that satisfy the inequality

‖Ax‖v,q,F > L‖x‖v,p,F ,

where x > 0 and x ∈ ℓp(v, F ) and also v = (vn)
∞

n=1 is an increasing, non-negative sequence
of real numbers. If p = q, we use Lv,p,F (A) instead of Lv,p,p,F (A). In this paper we obtain
a Hardy type formula for Lv,p,q,F (Hµ), where Hµ is a Hausdorff matrix and 0 < q 6 p 6 1.

Another purpose of this paper is to establish a lower bound for ‖ANM
W ‖v,p,F , where ANM

W
is the Nörlund matrix associated with the sequence W = {wn}

∞

n=1 and 1 < p < ∞. Our
results generalize some works of Bennett, Jameson and present authors.

Keywords: lower bound, weighted sequence space, Hausdorff matrix, Euler matrix,
Cesàro matrix, Hölder matrix, Gamma matrix

MSC 2010 : 26D15, 47A30, 40G05, 46A45, 54D55

1. Introduction

Let v = (vn)∞n=1 be an increasing, non-negative sequence of real numbers with

v1 = v2 = 1 and
∞
∑

n=1
vn/n = ∞. For p ∈ R \ {0}, let ℓp(v) denote the space of all

real sequences x = {xk}
∞

k=1, such that

‖x‖v,p :=

( ∞
∑

k=1

vkxp
k

)1/p

< ∞.

Next, assume that F is a partition of positive integers. If F = (Fn), where each

(Fn) is a finite interval of positive integers and

max Fn < min Fn+1 (n = 1, 2, 3, . . .),
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we denote by ℓp(v, F ) the space of all real sequences x = {xk}
∞

k=1 such that

‖x‖v,p,F :=

( ∞
∑

k=1

vk|〈x, Fk〉|
p

)1/p

< ∞,

where 〈x, Fk〉 =
∑

j∈Fk

xj . This space is called the block weighted sequence space

(see [1]).

For a certain In such as In = {n}, I = (In) is a partition of positive integers,

ℓp(w, I) = ℓp(w), and also ‖x‖w,p,F = ‖x‖w,p.

We write x > 0 if xk > 0 for all k. We also write x ↑ for the case that x1 6

x2 6 . . . 6 xn 6 . . .. The symbol x ↓ is defined in a similar way. For p, q ∈ R \ {0},

the lower bound involved here is the number Lw,p,q,F (A) which is defined as the

supremum of those L that obey the inequality

‖Ax‖v,q,F > L‖x‖v,p,F ,

where x > 0, x ∈ ℓp(v, F ), and A = (an,k)n,k>1 is a non-negative matrix operator

from ℓp(v, F ) into ℓq(v, F ). Also, we consider the upper bounds U of the form

‖Ax‖v,p,F 6 U‖x‖v,p,I

for all non-negative sequences x in ℓp(v, I). We seek the smallest possible value of U ,

and denote the best upper bound by ‖A‖v,p,F for a matrix operator A from ℓp(v, I)

into ℓp(v, F ). Obviously, we have

Lv,p,F (A) 6 ‖A‖v,p,F .

In Section 2 we generalize some techniques obtained by Chen and the present authors

in [6], [12] and deduce a lower bound for the Hausdorff matrices. In Section 3, we

also generalize Theorem 2.4 of [14] (also, Theorem 2.1 of [9]) to matrix operators

from ℓp(v, I) into ℓp(v, F ) and study the upper bound problem for some Nörlund

matrices.

Throughout the paper, we denote the conjugate exponent of p by p∗, so that

p∗ = p/(p− 1). We also suppose that F1 = {1}.

294



2. Hausdorff matrix operator

In this part, we are interested in the problem of finding the exact value of

Lv,p,q,F (A) for the case A = Hµ, where dµ is a Borel probability measure on [0,1]

and Hµ = Hµ(θ) = (hn,k(θ))n,k>1 is the Hausdorff matrix associated with dµ,

defined by

hn,k(θ) =







(

n − 1

k − 1

)
∫ 1

0

θk−1(1 − θ)n−k dµ(θ), 1 6 k 6 n,

0, k > n.

Clearly hn,k =

(

n − 1

k − 1

)

∆n−kµk for n > k > 1, where

µk =

∫ 1

0

θk−1 dµ(θ) (k = 1, 2, . . .)

and ∆n−kµk = µk − µk+1.

The Hausdorff matrices contain some famous classes of matrices. These classes

are as follows:

(i) Choice dµ(θ) = α(1 − θ)α−1 dθ gives the Cesàro matrix of order α;

(ii) choice dµ(θ) = point evaluation at θ = α gives the Euler matrix of order α;

(iii) choice dµ(θ) = (|log θ|α−1/Γ(α)) dθ gives the Hölder matrix of order α;

(iv) choice dµ(θ) = αθα−1 dθ gives the Gamma matrix of order α.

The Cesàro, Hölder and Gamma matrices have non-negative entries whenever

α > 0, and also the Euler matrix is non-negative when 0 6 α 6 1.

In this section we exhibit a Hardy type formula for Lv,p,q,F (Hµ), where 0 < q 6

p 6 1. In particular, we apply our results to the Cesàro matrices, Hölder matrices

and Gamma matrices which were recently considered in [2], [4], [5], [6], and [8] on

the ℓp spaces and in [7], [10], [11], [12] on the usual weighted sequence spaces ℓp(v).

Proposition 2.1. Let 0 < p < 1 and let A = (an,k) be a lower triangular matrix

with non-negative entries. If

sup
n>1

n
∑

k=1

an,k = R

and

inf
k>1

∞
∑

n=k

an,k = C > 0,

then ‖Ax‖v,p,F > L‖x‖v,p,I with

L > R1/p∗

C1/p.
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P r o o f. Applying Hölder’s inequality, we have

n
∑

k=1

an,kvkxp
k =

n
∑

k=1

a1−p
n,k (an,kv

1/p
k xk)p

6

( n
∑

k=1

an,k

)1−p( n
∑

k=1

an,kv
1/p
k xk

)p

6 R1−p

( n
∑

k=1

an,kv
1/p
k

)p

.

Since v is increasing, we have

R1−p
∞
∑

n=1

vn

(

∑

i∈Fn

∞
∑

j=1

ai,jxj

)p

= R1−p
∞
∑

n=1

vn

(

∑

i∈Fn

i
∑

j=1

ai,jxj

)p

> R1−p
∞
∑

n=1

(

∑

i∈Fn

i
∑

j=1

ai,jv
1/p
j xj

)p

>

∞
∑

n=1

(

∑

i∈Fn

i
∑

j=1

ai,jvjx
p
j

)

=

∞
∑

j=1

vjx
p
j

( ∞
∑

n=j

an,j

)

> C

∞
∑

k=1

vk

(

∑

j∈Ik

xj

)p

,

and this leads to the desired inequality. �

For α > 0, let E(α) = (en,k(α))n,k>1 denote the Euler matrix, defined by

en,k(α) =







(

n − 1

k − 1

)

αk−1(1 − α)n−k, n > k,

0, n < k

(cf. [2, p. 410]). For Ω ⊂ (0, 1] we have

∫

Ω

en,k(θ) dµ(θ) = µ(Ω) ×

∫ 1

0

en,k(θ) dλ(θ),

where dλ = (χΩ/µ(Ω)) dµ is a Borel probability measure on [0,1] with λ({0}) = 0.

Hence the second part of ([3, Proposition 19.2]) can be generalized in the following

way.

Proposition 2.2. Suppose that 0 < p 6 1, Ω ⊆ [0, 1] and dµ is any Borel

probability measure on [0, 1]. If µ({0}) = 0 or Ω ⊂ (0, 1], then the sequence
∥

∥

{∫

Ω en,k(θ) dµ(θ)
}∞

n=k

∥

∥

v,p
increases with k.
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Proposition 2.3. Let 0 < p 6 1. Then Lv,p,F (E(α)) > α−1/p for 0 < α 6 1.

P r o o f. We have
∞
∑

k=1

en,k(α) = 1 (n > 1) and
∞
∑

n=1
en,k(α) = α−1 (k > 1).

Applying Proposition 2.1 to the case that R = 1 and C = α−1 we deduce that

Lv,p,F (E(α)) > α−1/p for 0 < p < 1. For p = 1, from the Fubini theorem and the

monotonicity of (vn) we deduce that

‖E(α)x‖v,1,F =

∞
∑

n=1

vn〈E(α)x, Fn〉

=

∞
∑

n=1

vn

(

∑

i∈Fn

∞
∑

k=1

ei,k(α)xk

)

>

∞
∑

i=1

vi

( ∞
∑

n=1

en,i(α)

)(

∑

j∈Ii

xj

)

> α−1‖x‖v,1,I ,

which gives the desired inequality. This completes the proof. �

Now we are ready to introduce the basic theorem of this section.

Theorem 2.4. We have

(2.1) Lv,p,q,F (Hµ) >

∫

(0,1]

θ−1/q dµ(θ) (0 < q 6 p 6 1).

Moreover, the following statements are true:

(i) For p = q = 1, (2.1) is an equality.

(ii) For 0 < q < p 6 1 and Fn = In, (2.1) is an equality if and only if µ({0}) +

µ({1}) = 1 or the right-hand side of (2.1) is infinity.

P r o o f. Consider (2.1). Let x > 0 with ‖x‖v,p,F = 1. Then ‖x‖v,q,F >

‖x‖v,p,F = 1. Applying Minkowski’s inequality and Proposition 2.3, we have

‖Hµx‖v,q,F =

( ∞
∑

n=1

vn|〈Hµx, Fn〉|
q

)1/q

=

( ∞
∑

n=1

vn

(

∑

j∈Fn

∞
∑

k=1

hj,k(θ)xk

)q)1/q

=

( ∞
∑

n=1

vn

(

∑

j∈Fn

∞
∑

k=1

(

j − 1

k − 1

)
∫ 1

0

θk−1(1 − θ)j−k dµ(θ)xk

)q)1/q

=

( ∞
∑

n=1

vn

(
∫ 1

0

∑

j∈Fn

∞
∑

k=1

ej,k(θ)xk dµ(θ)

)q)1/q
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>

∫ 1

0

( ∞
∑

n=1

vn

(

∑

j∈Fn

∞
∑

k=1

ej,k(θ)xk

)q)1/q

dµ(θ)

=

∫ 1

0

‖E(θ)x‖v,q,F dµ(θ)

>

(
∫ 1

0

θ−1/q dµ(θ)

)

‖x‖v,q,F >

∫ 1

0

θ−1/q dµ(θ).

This leads to (2.1).

Now, consider (i). Let e2 = (0, 1, 0, . . .). Then e2 > 0 and ‖e2‖v,1,F = 1. Since

v is increasing and v1 = v2 = 1, we have

‖Hµe2‖v,1,F =

∞
∑

n=1

vn|〈Hµe2, Fn〉| =

∞
∑

n=2

vn

(

∑

j∈Fn

hj,2(θ)

)

=

∞
∑

n=2

vn

(

∑

j∈Fn

∫ 1

0

(

j − 1

2 − 1

)

θ(1 − θ)j−2 dµ(θ)

)

=

∫ 1

0

∞
∑

n=2

vn

(

∑

j∈Fn

ej,2(θ)

)

dµ(θ)

>

∫ 1

0

∞
∑

n=2

∑

j∈Fn

ej,2(θ) dµ(θ)

>

∫ 1

0

∞
∑

n=2

en,2(θ) dµ(θ) =

∫

(0,1]

θ−1 dµ(θ).

Hence

Lv,1,F (Hµ) 6

∫

(0,1]

1

θ
dµ(θ).

Combining this with (2.1), we obtain (i).

Now, consider (ii). Obviously, (2.1) is an equality, if its right-hand side is infinity.

For the case that µ({0}) + µ({1}) = 1, we have

‖Hµe2‖v,q,F =

( ∞
∑

n=1

vn|〈Hµe2, Fn〉|
q

)1/q

=

( ∞
∑

n=2

vn

(

∑

j∈Fn

hj,2(θ)

)q)1/q

>

( ∞
∑

n=2

vn

∑

j∈Fn

hq
j,2(θ)

)1/q

>

( ∞
∑

n=2

vnhq
n,2(θ)

)1/q

=

( ∞
∑

n=2

vn

((

n − 1

1

)
∫ 1

0

θ(1 − θ)n−2 dµ(θ)

)q)1/q

= µ({1}) =

∫

(0,1]

θ−1/q dµ(θ),
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where e2 is defined as above. This implies that

Lv,p,q,F (Hµ) 6

∫

(0,1]

θ−1/q dµ(θ)

and consequently, (2.1) is an equality.

Conversely, let 0 < q < p 6 1, Fn = In, and assume that µ({0}) + µ({1}) 6= 1,

and also
∫

(0,1]

θ−1/q dµ(θ) < ∞.

Then µ((0, 1)) 6= 0. Since 0 < q < 1, we have

(2.2)

∞
∑

n=0

(1 − θ)n <

∞
∑

n=0

(1 − θ)nq, θ ∈ (0, 1)

Applying (2.2), Minkowski’s inequality and the monotonicity of v, we have

∫

(0,1]

θ−1/q dµ(θ) =

∫

(0,1]

( ∞
∑

n=1

(1 − θ)n

)1/q

dµ(θ)(2.3)

<

∫

(0,1]

( ∞
∑

n=1

(1 − θ)nq

)1/q

dµ(θ)

6

∥

∥

∥

∥

{
∫

(0,1]

(1 − θ)n dµ(θ)

}∞

n=1

∥

∥

∥

∥

q

6

∥

∥

∥

∥

{
∫

(0,1]

(1 − θ)n dµ(θ)

}∞

n=1

∥

∥

∥

∥

v,q

.

By virtue of (2.3) we can find 0 < β < 1 such that

(2.4)

∫

(0,1]

θ−1/q dµ(θ) < β

∥

∥

∥

∥

{
∫

(0,1]

(1 − θ)n dµ(θ)

}∞

n=1

∥

∥

∥

∥

v,q

.

We claim that

Lv,p,q,F (Hµ)(2.5)

> min

(

β(q−p)/q

∫

(0,1]

θ−1/q dµ(θ), β

∥

∥

∥

∥

{
∫

(0,1]

(1 − θ)n dµ(θ)

}∞

n=1

∥

∥

∥

∥

v,q

)

.
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Let x > 0 with ‖x‖v,p,F = 1. We divide the proof into two cases: xk0
> β for some k0

or xk < β for all k. For the first case, applying Proposition 2.2 it follows that

‖Hµx‖v,q,F =

( ∞
∑

n=1

vn|〈Hµx, Fn〉|
q

)1/q

=

( ∞
∑

n=1

vn

(

∑

j∈Fn

∞
∑

k=1

hj,kxk

)q)1/q

>

( ∞
∑

n=1

vn

∑

j∈Fn

( ∞
∑

k=1

hj,kxk

)q)1/q

>

( ∞
∑

n=1

vn

( ∞
∑

k=1

hn,kxk

)q)1/q

> xk0

( ∞
∑

n=1

vnhq
n,k0

)1/q

> β

∥

∥

∥

∥

{
∫

(0,1]

en,k0
(θ) dµ(θ)

}∞

n=k0

∥

∥

∥

∥

v,q

> β

∥

∥

∥

∥

{
∫

(0,1]

en,1(θ) dµ(θ)

}∞

n=1

∥

∥

∥

∥

v,q

= β

∥

∥

∥

∥

{
∫

(0,1]

(1 − θ)n dµ(θ)

}∞

n=1

∥

∥

∥

∥

v,q

.

As for the second case, we have

xq
k > βq−pxp

k (∀k > 1).

This implies

‖x‖v,q =

( ∞
∑

k=1

vkxq
k

)1/q

> β(q−p)/q

( ∞
∑

k=1

vkxp
k

)1/q

= β(q−p)/q.

Applying (2.1), we deduce that

‖Hµx‖v,q,F >

(
∫

(0,1]

θ−1/q dµ(θ)

)

‖x‖v,q,F

=

(
∫

(0,1]

θ−1/q dµ(θ)

)( ∞
∑

n=1

vn

(

∑

j∈Fn

xj

)q)1/q

>

(
∫

(0,1]

θ−1/q dµ(θ)

)( ∞
∑

n=1

vn

∑

j∈Fn

xq
j

)1/q

>

(
∫

(0,1]

θ−1/q dµ(θ)

)( ∞
∑

n=1

vnxq
n

)1/q

> β(q−p)/q

(
∫

(0,1]

θ−1/q dµ(θ)

)

.

Hence, no matter which case occurs, ‖Hµx‖v,q,F is always greater than or equal to

the minimum stated at the right-hand side of (2.5). This leads to (2.5). It is clear

that β(q−p)/q > 1. Putting (2.4) and (2.5) together, we get (ii). This completes the

proof. �
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In the sequel, we present several special cases of Theorem 2.4.

Let dµ(θ) = α(1 − θ)α−1 dθ, where α > 0. Then Hµ reduces to the Cesàro

matrix C(α) (see [2, p. 410]). For 0 < q 6 1, we have

∫

(0,1]

θ−1/q dµ(θ) = α

∫

(0,1]

θ−1/q(1 − θ)α−1 dθ = ∞.

Applying (2.1), we get the following result.

Corollary 2.5. Let α > 0. Then Lv,p,q,F (C(α)) = ∞ for 0 < q 6 p 6 1.

Next, consider the case dµ(θ) = (|log θ|α−1/Γ(α)) dθ, where α > 0. For this case,

Hµ reduces to the Hölder matrix H(α) (see [2, p. 410]). We have

∫

(0,1]

θ−1/q dµ(θ) = ∞ (0 < q 6 1).

Hence, the following corollary is a consequence of (2.1).

Corollary 2.6. Let α > 0. Then Lv,p,q,F (H(α)) = ∞ for 0 < q 6 p 6 1.

The third special case that we consider is dµ(θ) = αθα−1 dθ, where α > 0. Then

Hµ becomes the Gamma matrix Γ(α) (see [2, p. 410]). We have

∫

(0,1]

θ−1/q dµ(θ) = α

∫

(0,1]

θ−1/q+α−1 dθ =







∞, α 6 1/q,

α

α − 1/q
, α > 1/q

Applying Theorem 2.1, we get the following corollary.

Corollary 2.7. Let α > 0 and 0 < q 6 p 6 1. Then Lv,p,q,F (Γ(α)) = ∞ for

α 6 1q. Also, we have Lv,p,q,F (Γ(α)) > α/(α − 1/q) for α > 1/q.

3. Nörlund matrix operator

Let W = (wn)∞n=1 be a sequence of non-negative numbers with w1 > 0, set Wn =
n
∑

k=1

wk, n > 1, and define the Nörlund matrix associated with W = (wn), ANM
W :=

A(wn) = (an,k), by

an,k =







wn−k+1

Wn
, 1 6 k 6 n,

0 otherwise.
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Notice that A(wn) = A(cwn) for any c > 0, so we may as well assume that w1 = 1.

When all the wn are 1, A
NM
W is the Cesàro matrix.

In this section we focus on the evaluation of the norm of ANM
W as a matrix op-

erator from ℓp(v, I) into ℓp(v, F ). We indicate that the operator norm of ANM
W is

no less than max(1, αp/(p − 1)), where α = lim inf
n→∞

nwn/Wn and 1 < p < ∞ (see

Theorem 3.2). Our result generalizes [14, Theorem 2.4].

Proposition 3.1. If
∑

an and
∑

bn are series with positive terms,
∑

an is di-

vergent and bn/an → 1 as n → ∞, then
N
∑

bn/
N
∑

an → 1 as N → ∞.

P r o o f. See Lemma 2 of [9]. �

Theorem 3.2. Suppose that W = (wn)∞n=1 is a non-negative, non-increasing

sequence of real numbers with w1 = 1. Then

‖ANM
W ‖v,p,F > max

(

1,
αp

p − 1

)

where α = lim inf
n→∞

nwn/Wn and 1 < p < ∞.

P r o o f. Fix δ ∈ (0, 1), and suppose N > 1 is sufficiently large so that wn/Wn >

((1 − δ)/n)α for all n > N . Then (wn−k+1)/Wn > ((1 − δ)/n)α for all n > N and

1 6 k 6 n, because the wj are non-increasing.

Suppose M > N and define x = (xk) by

xk =







1

k1/p
, N 6 k 6 M,

0 otherwise.

Using conventional notation, we have

‖(ANM
W )x‖p

v,p,F =

∞
∑

n=1

vn|〈A
NM
W x, Fn〉|

p

=

∞
∑

n=1

vn

(

∑

j∈Fn

j
∑

k=1

wj−k+1

Wj
xk

)p

>

∞
∑

n=1

vn

∑

j∈Fn

(

1

Wj

j
∑

k=1

wj−k+1xk

)p

>

M
∑

n=N

vn

(

1

Wn

n
∑

k=N

wn−k+1xk

)p
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> αp(1 − δ)p
M
∑

n=N

vn

(

1

n

n
∑

k=N

1

k1/p

)p

> αp(1 − δ)p
M
∑

n=N

vn

(

1

n

∫ n

N

1

x1/p
dx

)p

=
( p

p − 1

)p

αp(1 − δ)p
M
∑

n=N

vn

np

(

n1−1/p−N1−1/p)p

=
( p

p − 1

)p

αp(1 − δ)pζM

M
∑

n=N

vn

n

=
( p

p − 1

)p

αp(1 − δ)pζM

M
∑

n=N

vn

(

∑

j∈In

1

j

)

=
( p

p − 1

)p

αp(1 − δ)pζM‖x‖p
v,p,I ,

where ζM → 1 as M → ∞, by Proposition 3.1.

It follows that the operator norm of ANM
W is no less than (1 − δ)αp/(p − 1), and

since δ was arbitrary, the operator norm of ANM
W is no less than αp/(p − 1). Since

‖ANM
W e1‖v,p,F > 1 where e1 = (1, 0, 0, . . .) (note that ANM

W e1 is the first column

of ANM
W and v1 = 1, and also F1 = {1}), it follows that the operator norm of ANM

W

is no less than 1, either. This completes the proof of the statement. �

Theorem 3.2 also generalizes ([7, Corollary 2.7.9]).

Corollary 3.3. If the (wn) of Theorem 3.2 tend to a positive limit, then

‖ANM
W ‖v,p,F >

p

p − 1
∀ p > 1.

P r o o f. It is easy to see that if (wn) tends to a positive limit, then nwn/Wn → 1

as n → ∞. �

Corollary 3.3 is an analogue of ([13, Corollary 3.3]) which is obtained in a different

way.
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