Previous |  Up |  Next

Article

Keywords:
simple algebra; idempotent; group
Summary:
We find several large classes of equations with the property that every automorphism of the lattice of equational theories of commutative groupoids fixes any equational theory generated by such equations, and every equational theory generated by finitely many such equations is a definable element of the lattice. We conjecture that the lattice has no non-identical automorphisms.
References:
[1] Grech, M.: Irreducible varieties of commutative semigroups. J. Algebra 261 (2003), 207-228. DOI 10.1016/S0021-8693(02)00674-9 | MR 1967162 | Zbl 1026.20040
[2] Grech, M.: Automorphism of the lattice of equational theories of commutative semigroups. Trans. Am. Math. Soc. 361 (2009), 3435-3462. DOI 10.1090/S0002-9947-09-04849-1 | MR 2491887
[3] Ježek, J.: The lattice of equational theories. Part I: Modular elements. Czech. Math. J. 31 (1981), 127-152. MR 0604120
[4] Ježek, J.: The lattice of equational theories. Part II: The lattice of full sets of terms. Czech. Math. J. 31 (1981), 573-603. MR 0631604
[5] Ježek, J.: The lattice of equational theories. Part III: Definability and automorphisms. Czech. Math. J. 32 (1982), 129-164. MR 0646718
[6] Ježek, J.: The lattice of equational theories. Part IV: Equational theories of finite algebras. Czech. Math. J. 36 (1986), 331-341. MR 0831318
[7] Ježek, J.: The ordering of commutative terms. Czech. Math. J. 56 (2006), 133-154. DOI 10.1007/s10587-006-0010-z | MR 2207011 | Zbl 1164.03318
[8] Ježek, J., McKenzie, R.: Definability in the lattice of equational theories of semigroups. Semigroup Forum 46 (1993), 199-245. DOI 10.1007/BF02573566 | MR 1200214 | Zbl 0782.20051
[9] Kisielewicz, A.: Definability in the lattice of equational theories of commutative semigroups. Trans. Am. Math. Soc. 356 (2004), 3483-3504. DOI 10.1090/S0002-9947-03-03351-8 | MR 2055743 | Zbl 1050.08005
[10] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: Algebras, Lattices, Varieties. Volume I. Wadsworth & Brooks/Cole Monterey (1987). MR 0883644 | Zbl 0611.08001
[11] Tarski, A.: Equational logic and equational theories of algebras. Proc. Logic Colloq., Hannover 1966. Contrib. Math. Logic (1968), 275-288. MR 0237410
[12] Vernikov, B. M.: Proofs of definability of some varieties and sets of varieties of semigroups. Preprint. MR 2898768
Partner of
EuDML logo