Previous |  Up |  Next

Article

Keywords:
Henstock-Kurzweil integral; McShane integral; Pettis integral; $AC$; $AC_{*}$; and $AC_{\delta }$ functions; Alexiewicz norm
Summary:
We make some comments on the problem of how the Henstock-Kurzweil integral extends the McShane integral for vector-valued functions from the descriptive point of view.
References:
[1] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces. Isr. J. Math. 177 (2010), 285-306. DOI 10.1007/s11856-010-0047-4 | MR 2684422
[2] Fremlin, D. H.: The Henstock and McShane integrals of vector-valued functions. Ill. J. Math. 38 (1994), 471-479. DOI 10.1215/ijm/1255986726 | MR 1269699 | Zbl 0797.28006
[3] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. DOI 10.1215/ijm/1255986628 | MR 1299648 | Zbl 0810.28006
[4] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions. Ill. J. Math. 38 (1994), 127-147. DOI 10.1215/ijm/1255986891 | MR 1245838 | Zbl 0790.28004
[5] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. DOI 10.1215/ijm/1255988170 | MR 1053562 | Zbl 0685.28003
[6] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, Vol. 4. American Mathematical Society (AMS) Providence (1994). DOI 10.1090/gsm/004/09 | MR 1288751
[7] Hájek, P., Santalucía, V. Montesinos, Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer New York (2008). MR 2359536
[8] Kurzweil, J., Schwabik, Š.: On McShane integrability of Banach space-valued functions. Real Anal. Exch. 29 (2003-04), 763-780. MR 2083811
[9] Lee, T.-Y.: Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion. Math. Bohem. 130 (2005), 349-354. MR 2182381 | Zbl 1112.28008
[10] Lee, T.-Y., Chew, T.-S., Lee, P.-Y.: On Henstock integrability in Euclidean spaces. Real Anal. Exch. 22 (1996), 382-389. DOI 10.2307/44152760 | MR 1433623 | Zbl 0879.26045
[11] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces, I . Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer Berlin-Heidelberg-New York (1977). MR 0500056
[12] Lukashenko, T. P., Skvortsov, V. A., Solodov, A. P.: Generalized Integrals. URSS Moscow (2010), Russian.
[13] Naralenkov, K.: On Denjoy type extensions of the Pettis integral. Czech. Math. J. 60 (2010), 737-750. DOI 10.1007/s10587-010-0047-x | MR 2672413 | Zbl 1224.26028
[14] Saks, S.: Theory of the Integral. Dover Publications Mineola (1964). MR 0167578
[15] Swartz, C.: Norm convergence and uniform integrability for the Henstock-Kurzweil integral. Real Anal. Exch. 24 (1998), 423-426. DOI 10.2307/44152964 | MR 1691761 | Zbl 0943.26022
[16] Talagrand, M.: Pettis Integral and Measure Theory. Mem. Am. Math. Soc. 307 (1984). MR 0756174 | Zbl 0582.46049
[17] Ye, G.-J., An, T.-Q.: Remarks on Henstock integrability. Adv. Math. (China) 34 (2005), 741-745. MR 2213062
Partner of
EuDML logo