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1. Introduction

The Henstock-Kurzweil integral and the McShane integral have definitions simi-

lar to that of the Riemann integral. The basic distinction between these integrals

involves the class of partitions. Since a Henstock partition is clearly a McShane par-

tition, it is more difficult for a function to be McShane integrable. More precisely,

it can be shown that for real-valued functions the McShane integral is an absolute

integral, which is equivalent to the Lebesgue integral, and the Henstock-Kurzweil in-

tegral is a non-absolute integral, which is equivalent to the restricted Denjoy integral

(referred to as D∗ in Saks [14]). Since an AC function is necessarily an ACG∗ func-

tion, this is the descriptive way to see how the Henstock-Kurzweil integral generalizes

the McShane integral. It is important to point out that the Henstock-Kurzweil and

McShane integrals are equivalent for the class of bounded real-valued functions (both

are equivalent to the Lebesgue integral in this case). As a result of this fact, if a real-

valued function f is Henstock-Kurzweil integrable on [a, b], then [a, b] can be written

as the union of an increasing sequence {Fn} of closed sets on each of which f is

McShane integrable (cf. Theorem 9.18 of [6]). A more involved proof shows that
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the sequence {Fn} can be chosen so that the sequence {fχFn
} converges to f in the

Alexiewicz norm [10].

The Henstock-Kurzweil and McShane integrals admit obvious extensions to the

case of vector-valued functions [5], [4], [2], [3]. The main focus in this paper will

be the difference between the Henstock-Kurzweil and McShane integrals of vector-

valued functions from the descriptive point of view. We first consider three notions of

absolute continuity of a vector-valued function on a set (AC, AC∗, ACδ) and clarify

some of the relationships between these function classes. We further obtain neces-

sary and sufficient conditions to distinguish McShane integrable functions among the

Henstock-Kurzweil integrable functions in terms of the three function classes. The

Pettis integral (see [16] for the general theory of this integral) is descriptively the

widest of the AC integrals of vector-valued functions [13]. Nevertheless, the Pettis

and McShane integrals are equivalent for functions with values in some classes of

Banach spaces; in particular, these integrals coincide in subspaces of Hilbert gener-

ated spaces [1]. In the last section this fact is employed to show that if a Henstock-

Kurzweil integrable function f defined on [a, b] assumes values in a Banach space that

contains no isomorphic copy of c0 and is a subspace of a Hilbert generated space,

then [a, b] can be written as the union of an increasing sequence {Fn} of closed sets

on each of which f is McShane integrable and the sequence {fχFn
} converges to f

in the Alexiewicz norm.

2. Notation and terminology

First of all we set our notation and recall basic definitions. Throughout this paper

[a, b] will denote a fixed nondegenerate interval of the real line and I its closed

nondegenerate subinterval. X denotes a real Banach space and X∗ its dual. Given

F : [a, b] → X , ∆F (I) denotes the increment of F on I. Let E be a set and let t be

a point, then dist(t, E) is the distance from t to E, intE, E, ∂E, χE , and λ(E) will

denote the interior of E, the closure of E, the boundary of E, the characteristic

function of E, and the Lebesgue measure of E, respectively. For ease of notation, we

will drop the adjective Lebesgue and refer to measurable sets. Finally, a gauge on E

is any positive function defined on E.

In what follows we will need some standard notions related to the integration

and differentiation of vector-valued functions. They are summarized below for the

reader’s convenience.

Definition 1. Let F : [a, b] → X .

(a) Let E ⊂ [a, b]. A function f : E → X is a scalar derivative of F on E if for
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each x∗ in X∗ the function x∗F is differentiable almost everywhere on E and

(x∗F )′ = x∗f almost everywhere on E (the exceptional set may vary with x∗).

(b) A function f : [a, b] → X is Pettis integrable on [a, b] if for each measurable

set E in [a, b] there is a vector νf (E) ∈ X such that the Lebesgue integral
∫

E
x∗ ◦ f dλ exists and is equal to x∗(νf (E)) for all x∗ in X∗.

(c) A partial McShane partition of [a, b] is a finite collectionP = {(Ik, tk)}K
k=1 such

that {Ik}K
k=1 is a family of mutually non-overlapping intervals and tk ∈ [a, b] for

each k. P is subordinate to a gauge δ on [a, b] if Ik ⊂ (tk − δ(tk), tk + δ(tk)) for

each k. P is said to be a McShane partition of [a, b] provided {Ik}K
k=1 covers

[a, b].

We say that a function f : [a, b] → X is McShane integrable on [a, b], with McShane

integral w ∈ X , if for each positive number ε there is a gauge δ on [a, b] such that

(1)

∥

∥

∥

∥

K
∑

k=1

f(tk)λ(Ik) − w

∥

∥

∥

∥

< ε

whenever {(Ik, tk)}K
k=1 is a McShane partition of [a, b] subordinate to δ.

(d) A partial Henstock partition (Henstock partition) of [a, b] is a partial Mc-

Shane partition (McShane partition) {(Ik, tk)}K
k=1 of [a, b] with tk ∈ Ik for

each k. A function f : [a, b] → X is Henstock-Kurzweil integrable on [a, b], with

Henstock-Kurzweil integral w ∈ X , if for each positive number ε there is a

gauge δ on [a, b] such that (1) holds for each Henstock partition {(Ik, tk)}K
k=1 of

[a, b] subordinate to δ.

As usual, we say that a function f is Pettis (McShane, Henstock-Kurzweil) inte-

grable on a set E ⊂ [a, b] if the function fχE is Pettis (McShane, Henstock-Kurzweil)

integrable on [a, b] and
∫

E
f =

∫ b

a
fχE . Standard arguments show that a McShane

(Henstock-Kurzweil) integrable on [a, b] function is McShane (Henstock-Kurzweil)

integrable on any subinterval I of [a, b]. Moreover, a McShane integrable on [a, b]

function is McShane integrable on any measurable subset of [a, b] (see, for exam-

ple, Theorem 9 of [8]). If f is Pettis (McShane, Henstock-Kurzweil) integrable on

[a, b], then it will be convenient to use the phrase ‘indefinite integral’ to mean the

function F (t) =
∫ t

a
f . In this case, it is easy to verify that the function f is a scalar

derivative of its indefinite integral on [a, b] and
∫

I
f = ∆F (I) for any subinterval I

of [a, b]. At last, ‖f‖A = sup
a<t6b

∥

∥

∫ t

a
f
∥

∥ is the Alexiewicz norm of the function f .

1093



3. Classes of absolutely continuous vector-valued functions

We begin by introducing different notions of absolute continuity on a set. Let

F : [a, b] → X and let E be a non-empty subset of [a, b].

Definition 2. F is said to be AC (AC∗) on E if for each positive number ε there

exists a positive number η such that

(2)

∥

∥

∥

∥

K
∑

k=1

∆F (Ik)

∥

∥

∥

∥

< ε

for each finite collection of pairwise non-overlapping intervals {Ik}K
k=1 with ∂Ik ⊂ E

(∂Ik ∩ E 6= ∅) and

(3)

K
∑

k=1

λ(Ik) < η.

The third type of absolute continuity related to partial Henstock partitions arises

naturally in the context of the Henstock-Kurzweil integral.

Definition 3. F is said to be ACδ on E if for each positive number ε there

exist a positive number η and a gauge δ on [a, b] such that (2) holds for each partial

Henstock partition {(Ik, tk)}K
k=1 of [a, b] with tk ∈ ∂Ik ∩E and (3) subordinate to δ.

Remark 1. In the case where E is equal to [a, b] straightforward arguments can

be given to show that all the three function classes AC, AC∗, and ACδ coincide.

However, it is far from obvious how these three types of absolute continuity compare

on an arbitrary set.

Remark 2. Our function classesAC, AC∗, and ACδ are different from the analo-

gous function classes in which the norm is inside of the sum (2) (see for example [12]).

Further, we say that F is ACG (ACG∗, ACGδ) on E if E can be written as

a countable union of sets on each of which F is AC (AC∗, ACδ). If these sets can

be chosen closed, then F is said to be [ACG] ([ACG∗], [ACGδ]) on E.

Theorem 1. Let F : [a, b] → X and let E be a non-empty closed subset of [a, b].

Suppose that F |E is continuous on E. If F is ACG (ACG∗) on E, then F is [ACG]

([ACG∗]) on E.

P r o o f. Let E =
∞
⋃

k=1

Ek so that F is AC (AC∗) on Ek for each k. Since Ek ⊂ E

and F |E is continuous on E, the function F |Ek
is continuous on Ek for each k. Now

it follows from part (e) of Theorem 3.1 of [13] that F is AC (AC∗) on Ek for each k.

�
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In the case where E is closed the next theorem relates the AC∗ functions on E

with the AC functions on E.

Theorem 2. Let F : [a, b] → X be continuous on [a, b]. Suppose that E is a non-

empty closed subset of [a, b] and let {(ak, bk)}∞k=1 be a sequence of intervals in [a, b]

contiguous to E ∪ {a, b}. The following two statements are equivalent:

(i) F is AC∗ on E.

(ii) F is AC on E and for each positive ε there is a positive integer N such that

∥

∥

∥

∥

∑

k∈π

{F (dk) − F (ck)}

∥

∥

∥

∥

< ε

whenever π is a finite subset of {N + 1, . . .} and ak 6 ck < dk 6 bk for each k.

P r o o f. (i) ⇒ (ii) Fix a positive number ε and let η > 0 correspond to ε in Defini-

tion 2. As
∑

k

(bk −ak) < ∞, there is a positive integer N such that
∑

k>N

(bk −ak) < η

and ak, bk ∈ E for each k > N . Let π be a finite subset of {N + 1, . . .} with

ak 6 ck < dk 6 bk for each k ∈ π. Then

∥

∥

∥

∥

∑

k∈π

{F (dk) − F (ck)}

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

k∈π

{F (bk) − F (ak)} − {F (ck) − F (ak)} − {F (bk) − F (dk)}

∥

∥

∥

∥

< 3ε,

which is what we desired. In passing we point out that this direction of the theorem

is valid even if the function F is not continuous on [a, b].

(ii) ⇒ (i) Fix a positive number ε and let η > 0 correspond to ε in Definition 2 with

‖∆F (I)‖ < ε/N whenever λ(I) < η. Let {Ik}K
k=1 be a finite collection of mutually

non-overlapping intervals with ∂Ik ∩ E 6= ∅ and
K
∑

k=1

λ(Ik) < η. By partitioning each

interval if necessary, we may assume that for each k either k ∈ π1 = {k : ∂Ik ⊂ E}

or k ∈ π2 = {k : int Ik ∩ E = ∅ and ∂Ik ∩ E = {τk}}. Then we have, using (ii),

∥

∥

∥

∥

K
∑

k=1

∆F (Ik)

∥

∥

∥

∥

6

∥

∥

∥

∥

∑

k∈π1

∆F (Ik)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

k∈π2

∆F (Ik)

∥

∥

∥

∥

< ε +

∥

∥

∥

∥

∑

k∈π2

∆F (Ik)

∥

∥

∥

∥

< ε +
ε

N
· 2N + 2ε = 5ε.

The proof is complete. �
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Corollary 1. Suppose that E is a non-empty closed subset of [a, b] and let

{(ak, bk)}∞k=1 be a sequence of intervals in [a, b] contiguous to E ∪ {a, b}. Let

F : [a, b] → X be AC∗ on E and let {kn}∞n=1 be an increasing sequence of posi-

tive integers. Then the series
∑

n

{F (dkn
) − F (ckn

)} is unconditionally convergent

whenever [ckn
, dkn

] ⊂ [akn
, bkn

] for each n.

P r o o f. The unconditional convergence of the series
∑

n

{F (dkn
)−F (ckn

)} results

from Proposition 1.c.1 of [11]. �

4. Indefinite Henstock-Kurzweil integrals

The properties of the indefinite Henstock-Kurzweil integral will be considered in

this section. We begin with the Saks-Henstock Lemma. As an easy consequence,

this lemma guarantees the continuity of the indefinite Henstock-Kurzweil integral.

Lemma 1 (Saks-Henstock Lemma). Let f : [a, b] → X be Henstock-Kurzweil

(McShane) integrable on [a, b], let F : [a, b] → X be the indefinite Henstock-Kurzweil

(McShane) integral of f , and let ε > 0. Suppose that a gauge δ on [a, b] corresponds

to ε in the definition of the Henstock-Kurzweil (McShane) integral of f on [a, b].

If {(Ik, tk)}K
k=1 is a partial Henstock (McShane) partition of [a, b] subordinate to δ,

then
∥

∥

∥

∥

K
∑

k=1

f(tk)λ(Ik) −
K

∑

k=1

∆F (Ik)

∥

∥

∥

∥

6 ε.

P r o o f. We omit the proof patterned after that of Lemma 9.11 of [6]. �

For the reader’s convenience we give a proof of the Uniform Henstock Lemma

established in [10], Lemma 3. The lemma is stated differently in [10], but we will

need it in a weaker form concerning vector-valued functions defined on a compact

interval of the real line (cf. Lemma 1 of [15]).

Lemma 2 (Uniform Henstock Lemma). Let f : [a, b] → X be Henstock-Kurzweil

integrable on [a, b] and let ε > 0. Suppose that a gauge δ on [a, b] corresponds to ε

in the definition of the Henstock-Kurzweil integral of f on [a, b]. If {(Ik, tk)}K
k=1 is

a partial Henstock partition of [a, b] subordinate to δ, then

∥

∥

∥

∥

K
∑

k=1

f(tk)χIk
−

K
∑

k=1

fχIk

∥

∥

∥

∥

A

6 2ε.
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P r o o f. Fix a partial Henstock partition {(Ik, tk)}K
k=1 of [a, b] with max Ik 6

min Ik+1 for each k < K. If t ∈ int IK , then we have, using the Saks-Henstock

Lemma,

∥

∥

∥

∥

(HK)

∫ t

a

( K
∑

k=1

f(tk)χIk
−

K
∑

k=1

fχIk

)∥

∥

∥

∥

6

{

ε, if tK 6 t,

2ε, if tK > t.

It follows that
∥

∥

∥

∥

(HK)

∫ t

a

( K
∑

k=1

f(tk)χIk
−

K
∑

k=1

fχIk

)
∥

∥

∥

∥

6 2ε

for each t ∈ (a, b] and the proof is complete. �

The next auxiliary result is an immediate consequence of the Uniform Henstock

Lemma (cf. Lemma 4 of [10]).

Lemma 3. Let f : [a, b] → X be Henstock-Kurzweil integrable on [a, b], let f be

Henstock-Kurzweil integrable on a measurable subset E of [a, b], and let ε > 0. Then

there is a gauge δ on [a, b] such that

∥

∥

∥

∥

K
∑

k=1

fχIk∩E −
K

∑

k=1

fχIk

∥

∥

∥

∥

A

6 ε

whenever {(Ik, tk)}K
k=1 is a partial Henstock partition of [a, b] subordinate to δ with

tk ∈ E for each k.

P r o o f. Let gauges δ1 and δ2 correspond to ε/4 in the definition of the Henstock-

Kurzweil integral of f on [a, b] and on E, respectively. Define a gauge δ on [a, b] by

δ = min(δ1, δ2). Let {(Ik, tk)}K
k=1 be a partial Henstock partition of [a, b] subordinate

to δ with tk ∈ E for each k. By Lemma 2, we obtain

∥

∥

∥

∥

K
∑

k=1

fχIk∩E −
K

∑

k=1

fχIk

∥

∥

∥

∥

A

6

∥

∥

∥

∥

K
∑

k=1

fχEχIk
−

K
∑

k=1

fχE(tk)χIk

∥

∥

∥

∥

A

+

∥

∥

∥

∥

K
∑

k=1

f(tk)χIk
−

K
∑

k=1

fχIk

∥

∥

∥

∥

A

6 ε.

�

Theorem A provides the descriptive characterization of the Pettis integral [13].
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Theorem A. Let f : [a, b] → X . Then f is Pettis integrable on [a, b] if and only

if there is a function F : [a, b] → X such that F is AC on [a, b] and f is a scalar

derivative of F on [a, b].

On the other hand, Fremlin’s criterion, Theorem B, can be used to determine

whether or not a given Henstock-Kurzweil integrable function is McShane inte-

grable [2].

Theorem B. Let f : [a, b] → X . Then f is McShane integrable on [a, b] if and

only if f is both Henstock-Kurzweil and Pettis integrable on [a, b].

Combining Theorems A and B, we obtain the following descriptive version of

Theorem C.

Theorem 3. Let f : [a, b] → X . Then f is McShane integrable on [a, b] if and only

if f is Henstock-Kurzweil integrable on [a, b] and its indefinite Henstock-Kurzweil

integral is AC on [a, b].

P r o o f. The necessity part of the theorem results from Lemma 6 of [8].

Suppose that f is Henstock-Kurzweil integrable on [a, b] and let F be its indefinite

Henstock-Kurzweil integral. Since F is AC on [a, b], by Theorem A, f is Pettis

integrable on [a, b]. Now Theorem B yields McShane integrability of f on [a, b]. �

Remark 3. Our Theorem 3 is similar in spirit to Fremlin’s Corollary 9 of [2] that

provides two other characterizations of McShane integrable functions (see also The-

orem 14.55 of [12] for another modification of Fremlin’s result).

Remark 4. Let {In}
∞
n=1 be a fixed sequence of intervals in [a, b] such that bn =

max In < min In+1 for each n, lim
n

bn = b. We write ϕn to represent the function

χI2n−1

2λ(I2n−1)
−

χI2n

2λ(I2n)
.

Let {en}
∞
n=1 denote the standard unit vector basis of c0. Define a sequence {xn}

in c0 by

e1,
e2

2
,
e2

2
,
e3

3
,
e3

3
,
e3

3
,
e4

4
, . . .

and a function g : [a, b] → c0 by g =
∑

n

ϕnxn.

In Example 4.2 of [13], the following three properties of g were established.

(a) g is Dunford integrable on [a, b].

(b) If G(t) = (D)
∫ t

a
g for each t in [a, b], then G is continuous on [a, b].

(c) G is not AC on [a, b].
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Since g is a bounded step function (a step function is a linear combination of charac-

teristic functions of intervals) on [a, t] for all t in (a, b), (b) shows that g is Henstock-

Kurzweil integrable on [a, b]. By (c), g is not McShane integrable on [a, b]. Con-

sequently, in the sufficiency part of Theorem 3, the AC property of the indefinite

integral cannot be replaced with the weaker condition that the integrand is Dunford

integrable.

Here is another remark related to the preceding.

Remark 5. A function F : [a, b] → X is said to be V B on [a, b] if there is

a positive number M such that

∥

∥

∥

∥

K
∑

k=1

∆F (Ik)

∥

∥

∥

∥

6 M

for each finite collection of pairwise non-overlapping intervals {Ik}K
k=1. Note that,

by Lemma 3.1 of [13], G is a V B function on [a, b]. This means that a result of

Lee Tuo-Yeong, Theorem 3.1 of [9], essentially stating that, in the sufficiency part

of Theorem 3, the AC property can be replaced with the V B property is false. As

a consequence the main result of [9], Theorem 3.3, fails to be proved. However,

both these results are still valid in Banach spaces containing no isomorphic copy

of c0 [17]. For the sake of completeness, we include proofs of these two facts below

(see Corollaries 2 and 6).

Corollary 2. Suppose that X does not contain an isomorphic copy of c0. If

f : [a, b] → X is Henstock-Kurzweil integrable on [a, b] and its indefinite integral

is V B on [a, b], then f is McShane integrable on [a, b].

P r o o f. The corollary results from Theorem 3 and a Banach-Zarecki type the-

orem, Theorem 4.2 of [13]. �

Next we seek to explore the relationships between various types of absolute conti-

nuity of the indefinite Henstock-Kurzweil integral and McShane integrability of the

integrand on a set. The following two theorems provide a set of sufficient conditions

for McShane integrability on a closed set.

Theorem 4. Let f : [a, b] → X be Henstock-Kurzweil integrable on [a, b] and let

F : [a, b] → X be the indefinite Henstock-Kurzweil integral of f . Suppose that E is

a non-empty closed subset of [a, b]. If f is Henstock-Kurzweil integrable on E and

F is AC on E, then f is McShane integrable on E.
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P r o o f. Since F is AC on E and fχE is a scalar derivative of F on E, by

Corollary 5.1 of [13], fχE is Pettis integrable on [a, b]. Now Theorem B yields

McShane integrability of fχE on [a, b]. �

Theorem 5. Let f : [a, b] → X be Henstock-Kurzweil integrable on [a, b] and let

F : [a, b] → X be the indefinite Henstock-Kurzweil integral of f . Suppose that E is

a non-empty closed subset of [a, b]. If F is AC∗ on E, then f is McShane integrable

on E.

P r o o f. We will first prove that f is Henstock-Kurzweil integrable on E. Fix

a positive number ε and let a gauge δ0 on [a, b] correspond to ε in the definition

of the Henstock-Kurzweil integral of f on [a, b]. Suppose that F is the indefinite

Henstock-Kurzweil integral of f and {(ak, bk)}∞k=1 is a sequence of intervals in [a, b]

contiguous to E ∪ {a, b}. Fix a positive integer N that corresponds to ε in (ii) of

Theorem 2 with ak, bk ∈ E for each k > N . We make note of the fact that, by

Corollary 1, the series
∞
∑

k=1

{F (bk)−F (ak)} is unconditionally convergent to a vector,

w say, in X . Further, as F is continuous on [a, b], there is a positive number η such

that ‖∆F (I)‖ < ε/N for any subinterval I of [a, b] with λ(I) < η. We will show that

(HK)
∫

E
f = F (b) − w. Let E0 =

N
⋃

k=1

{ak, bk}. Define a gauge δ on [a, b] by

δ(t) =











min(δ0(t), dist(t, {ak, bk}), if t ∈ (ak, bk) for some k,

min(δ0(t), dist(t, E0)), if t ∈ E \ E0,

min(δ0(t), η), if t ∈ E0.

Let {(Ik, tk)}K
k=1 be a Henstock partition of [a, b] subordinate to δ. It follows that

∥

∥

∥

∥

K
∑

k=1

fχE(tk)λ(Ik) − F (b) + w

∥

∥

∥

∥

6

∥

∥

∥

∥

∑

k : tk∈E

f(tk)λ(Ik) −
∑

k : tk∈E

∆F (Ik)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

k : tk∈E

∆F (Ik) − F (b) + w}

∥

∥

∥

∥

6 ε +

∥

∥

∥

∥

w −
∑

k : tk 6∈E

∆F (Ik)

∥

∥

∥

∥

6 ε +

∥

∥

∥

∥

∑

k>N

{F (bk) − F (ak)}

∥

∥

∥

∥

+

∥

∥

∥

∥

N
∑

k=1

{F (bk) − F (ak)} −
∑

k : tk 6∈E

∆F (Ik)

∥

∥

∥

∥

< ε + ε +
ε

N
· 2N + ε = 5ε.

This means that the function fχE is Henstock-Kurzweil integrable on [a, b]. Now

Theorem 4 applies to f . The proof is complete. �
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In addition to the above two sufficient conditions, we have the following necessary

condition for McShane integrability on a measurable set.

Theorem 6. Let f : [a, b] → X be Henstock-Kurzweil integrable on [a, b] and

let F : [a, b] → X be the indefinite Henstock-Kurzweil integral of f . Suppose that

E is a non-empty measurable subset of [a, b]. If f is McShane integrable on E, then

F is ACδ on E.

P r o o f. By Theorem 9 of [8], f is McShane integrable on each measurable subset

of E. Given a measurable subset A of [a, b], let

Φ(A) = (M)

∫

A∩E

f.

Fix a positive number ε and let η > 0 be such that ‖Φ(A)‖ < ε whenever λ(A) < η

(see Theorem 11 of [8]). Let gauges δ1 and δ2 on [a, b] correspond to ε in the

definitions of the Henstock-Kurzweil integral of f on [a, b] and on E, respectively.

Define a gauge δ on [a, b] by δ = min(δ1, δ2). Let {(Ik, tk)}K
k=1 be a partial Henstock

partition of [a, b] with tk ∈ ∂Ik ∩ E and (3) subordinate to δ. Then it follows that

∥

∥

∥

∥

K
∑

k=1

∆F (Ik)

∥

∥

∥

∥

6

∥

∥

∥

∥

K
∑

k=1

Φ(Ik)

∥

∥

∥

∥

+

∥

∥

∥

∥

K
∑

k=1

∆F (Ik) −
K

∑

k=1

Φ(Ik)

∥

∥

∥

∥

6

∥

∥

∥

∥

Φ

( K
⋃

k=1

Ik

)∥

∥

∥

∥

+

∥

∥

∥

∥

K
∑

k=1

∆F (Ik) −
K

∑

k=1

f(tk)λ(Ik)

∥

∥

∥

∥

+

∥

∥

∥

∥

K
∑

k=1

fχE(tk)λ(Ik) −
K

∑

k=1

(HK)

∫

Ik

fχE

∥

∥

∥

∥

< ε + ε + ε = 3ε.

Thus F is ACδ on E. �

In the case in which an integrand f is bounded on a set E, it can easily be seen

that the indefinite Henstock-Kurzweil integral of f is necessarily ACδ on E.

Theorem 7. Let f : [a, b] → X be Henstock-Kurzweil integrable on [a, b] and let

F : [a, b] → X be the indefinite Henstock-Kurzweil integral of f . Suppose that E is

a non-empty subset of [a, b]. If f is bounded on E, then F is ACδ on E.

P r o o f. Let M > 0 be such that ‖f(t)‖ 6 M for each t in E. Fix a positive

number ε and let a gauge δ on [a, b] correspond to ε in the definition of the Henstock-

Kurzweil integral of f on [a, b]. Let η = ε/M . Let {(Ik, tk)}K
k=1 be a partial Henstock
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partition of [a, b] with tk ∈ ∂Ik ∩ E and (3) subordinate to δ. Then

∥

∥

∥

∥

K
∑

k=1

∆F (Ik)

∥

∥

∥

∥

6

∥

∥

∥

∥

K
∑

k=1

f(tk)λ(Ik)

∥

∥

∥

∥

+

∥

∥

∥

∥

K
∑

k=1

f(tk)λ(Ik) −
K

∑

k=1

∆F (Ik)

∥

∥

∥

∥

< Mη + ε = 2ε.

�

Corollary 3. If f : [a, b] → X is both Henstock-Kurzweil integrable and bounded

on [a, b], then f is McShane integrable on [a, b].

P r o o f. Since the indefinite Henstock-Kurzweil integral of f is ACδ on [a, b], it

is AC on [a, b]. Now Theorem 3 applies to f . �

Corollary 4. If f : [a, b] → X is Henstock-Kurzweil integrable on [a, b], then the

indefinite Henstock-Kurzweil integral of f is ACGδ on [a, b].

P r o o f. The corollary results from the fact that

[a, b] =
∞
⋃

n=1

{t ∈ [a, b] : n − 1 6 ‖f(t)‖ < n}.

�

We conclude this section with a more involved approximation property of the

indefinite Henstock-Kurzweil integral (cf. Theorem 6 of [10]).

Theorem 8. Let f : [a, b] → X be Henstock-Kurzweil integrable on [a, b]. Sup-

pose that [a, b] can be written as a countable union of closed sets on each of which

f is McShane integrable. Then [a, b] is the union of an increasing sequence {Fn}∞n=1

of closed sets such that f is McShane integrable on Fn and ‖fχFn
− f‖A < n−1 for

each n.

P r o o f. With no loss of generality, we may assume that [a, b] is the union of an

increasing sequence {Ei}∞i=1 of closed sets such that f is McShane integrable on Ei

for each i.

Fix a positive number ε and a positive integer n. We will prove that there exists

a closed set F such that En ⊂ F ⊂ Ei(n,ε) for some i(n, ε) > n and ‖fχF − f‖A < ε.

For each i, let a gauge δi on [a, b] correspond to Ei and ε/2i in Lemma 3. Define

a gauge δ on [a, b] by

δ(t) =

{

δn(t), if t ∈ En,

min(δi(t), dist(t, Ei−1)), if t ∈ Ei \ Ei−1 for some i > n.
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Fix a Henstock partition {(Ik, tk)}K
k=1 of [a, b] subordinate to δ. Let Dn = En,

Di = Ei \ Ei−1 for each i > n, and

F =

∞
⋃

i=n

⋃

k : tk∈Di

Ik ∩ Ei.

It is easy to check that F is closed, En ⊂ F , and F ⊂ Ei(n,ε) for some i(n, ε) > n.

By Lemma 3, we obtain

‖fχF − f‖A 6

∞
∑

i=n

∥

∥

∥

∥

∑

k : tk∈Di

(fχF∩Ik
− fχIk

)

∥

∥

∥

∥

A

=

∞
∑

i=n

∥

∥

∥

∥

∑

k : tk∈Di

(fχEi∩Ik
− fχIk

)

∥

∥

∥

∥

A

<

∞
∑

i=n

ε

2i
6 ε.

Now define inductively a sequence {Fn}∞n=1 of sets and a sequence {in}∞n=1 of

positive integers as follows. Let F1 be a closed set such that E1 ⊂ F1 ⊂ Ei1 for

some i1 > 1 and ‖fχF1
− f‖A < 1. For each n > 1, let Fn be a closed set such

that Ein−1
⊂ Fn ⊂ Ein

for some in > in−1 and ‖fχFn
− f‖A < n−1. Evidently, the

sequence {Fn}∞n=1 has all the desired properties. The proof is complete. �

5. Henstock-Kurzweil integration

in some classes of Banach spaces

In this section we will refine the relationships between the Henstock-Kurzweil

integral and the McShane integral in the situation in which some restrictions are

placed on the Banach space involved. It should be noted that we approach our

results in this section by means of the Pettis integral. For this reason, it is unclear

whether results similar to ours are valid in a more general context.

We begin by showing that in Banach spaces that do not contain an isomorphic

copy of c0 an indefinite Henstock-Kurzweil integral is necessarily [ACG].

Theorem 9. Suppose that X does not contain an isomorphic copy of c0. Let

F : [a, b] → X be an indefinite Henstock-Kurzweil integral. Then F is [ACG] on

[a, b].

P r o o f. Note that F has a scalar derivative on [a, b]. Since the function x∗F

is ACG∗ on [a, b] for each x∗ in X∗, by a Banach-Zarecki type theorem, Corollary 4.4

of [13], the function F is [ACG] on [a, b]. �
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Corollary 5. Suppose that X does not contain an isomorphic copy of c0. Let

f : [a, b] → X be Henstock-Kurzweil integrable on [a, b]. Then [a, b] can be written

as a countable union of closed sets on each of which f is Pettis integrable.

P r o o f. Let F : [a, b] → X be the indefinite Henstock-Kurzweil integral of f on

[a, b]. By the preceding theorem, [a, b] is the union of {Ek}∞k=1 so that Ek is closed

and F is AC on Ek for each k. As f is a scalar derivative of F on Ek, Corollary 5.1

of [13] yields Pettis integrability of f on Ek. �

Corollary 6. Suppose that X does not contain an isomorphic copy of c0. If

f : [a, b] → X is Henstock-Kurzweil integrable on [a, b], then f is McShane integrable

on some nondegenerate subinterval of [a, b].

P r o o f. Let F : [a, b] → X be the indefinite Henstock-Kurzweil integral of f .

Since F is both continuous and ACG on [a, b], by part (c) of Theorem 3.2 of [13],

there is a nondegenerate interval [c, d] ⊂ [a, b] such that F is AC on [c, d]. Note that

(HK)

∫ t

c

f = F (t) − F (c)

for each t in [c, d]. Now Theorem 3 applies to f on the interval [c, d]. The proof is

complete. �

A Banach space X is said to be Hilbert generated if there exist a Hilbert space H

and a bounded linear operator T : H → X such that T (H) is dense in X . In

particular, Hilbert generated spaces form a subclass of weakly compactly generated

spaces. Some facts about Hilbert generated spaces are gathered in [7, § 6.3]. The

importance of Hilbert generated spaces for the integration of vector-valued functions

stems from the following theorem [1].

Theorem C. Suppose that X is a subspace of a Hilbert generated space. Let

f : [a, b] → X be Pettis integrable on [a, b]. Then f is McShane integrable on [a, b].

As an illustration, the McShane integral and the Pettis integral coincide for func-

tions with values in separable spaces, c0(Γ), super-reflexive spaces (for example,

Lp(µ), where 1 < p < ∞), L1(µ), where µ is a finite measure (see Corollary 3.8

of [1]).

Theorem 10. Suppose that X does not contain an isomorphic copy of c0 and is

a subspace of a Hilbert generated space. Let f : [a, b] → X be Henstock-Kurzweil

integrable on [a, b]. Then [a, b] is the union of an increasing sequence {Fn}∞n=1 of

closed sets such that f is McShane integrable on Fn and ‖fχFn
− f‖A < n−1 for

each n.
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P r o o f. By Corollary 5 and Theorem C, [a, b] is the union of a sequence of

closed sets on each of which f is McShane integrable. Now Theorem 8 applies to f .

The proof is complete. �

Remark 6. For example, X satisfies the assumptions of Theorem 10 if X is

separable and does not contain an isomorphic copy of c0, or if X is super-reflexive,

or if X equals L1(µ), where µ is a finite measure.

Remark 7. Theorem 10 provides a partial solution to Problem 3.4 of [9].

Corollary 7. Suppose that X does not contain an isomorphic copy of c0 and

is a subspace of a Hilbert generated space. Let F : [a, b] → X be an indefinite

Henstock-Kurzweil integral. Then F is [ACGδ] on [a, b].
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