[5] Irelli, G. Cerulli: Canonically positive basis of cluster algebras of type $\smash{\widetilde{A}_2^{(1)}}$. arXiv:\allowbreak0904.2543.
[6] Ding, M., Xiao, J., Xu, F.: Integral bases of cluster algebras and representations of tame quivers. arXiv:0901.1937.
[7] Ding, M., Xu, F.: Bases of the quantum cluster algebra of the Kronecker quiver. arXiv:1004.2349.
[8] Ding, M., Xu, F.: Bases in quantum cluster algebra of finite and affine types. arXiv:\allowbreak1006.3928.
[9] Dlab, V., Ringel, C.:
Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 173 (1976).
MR 0447344 |
Zbl 0332.16015
[13] Geiss, C., Leclerc, B., Schröer, J.:
Generic bases for cluster algebras and the Chamber Ansatz. arXiv:1004.2781.
MR 2833478
[14] Hubery, A.:
Acyclic cluster algebras via Ringel-Hall algebras. Preprint (2005).
MR 2844758
[15] Qin, F.: Quantum cluster variables via Serre polynomials. arXiv:1004.4171.
[16] Rupel, D.: On quantum analogue of the Caldero-Chapoton formula. arXiv:1003.2652.