[1] Nahia, Z. Ben, Salem, N. Ben:
Spherical harmonics and applications associated with the Weinstein operator. Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 235-241.
MR 1404710
[2] Nahia, Z. Ben, Salem, N. Ben:
On a mean value property associated with the Weinstein operator. Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 243-253.
MR 1404711
[4] Beurling, A.:
The Collected Works of Arne Beurling, Vol. 1, Vol. 2. L. Carleson, P. Malliavin, J. Neuberger, J. Wermen Birkhäuser Boston (1989).
MR 1057613
[5] Brelot, M.:
Equation de Weinstein et potentiels de Marcel Riesz. Lect. Notes Math. 681. Séminaire de Théorie de Potentiel Paris, No. 3 (1978), 18-38 French.
MR 0521776 |
Zbl 0386.31007
[6] Bonami, A., Demange, B., Jaming, P.:
Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19 (2003), 22-35.
MR 1993414
[12] Mejjaoli, H., Trimèche, K.:
An analogue of Hardy's theorem and its $L^p$-version for the Dunkl-Bessel transform. J. Concr. Appl. Math. 2 (2004), 397-417.
MR 2224912
[13] Mejjaoli, H.:
An analogue of Beurling-Hörmander's theorem for the Dunkl-Bessel transform. Fract. Calc. Appl. Anal. 9 (2006), 247-264.
MR 2305441 |
Zbl 1210.44002
[17] Miyachi, A.: A generalization of theorem of Hardy. Harmonic Analysis Seminar, Izunagaoka, Shizuoka-Ken, Japan 1997 44-51 ().
[19] Parui, S., Sarkar, R. P.:
Beurling's theorem and $L^{p}$-$L^{q}$ Morgan's theorem for step two nilpotent Lie groups. Publ. Res. Inst. Math. Sci. 44 (2008), 1027-1056.
DOI 10.2977/prims/1231263778 |
MR 2477903