Previous |  Up |  Next

Article

Keywords:
Besov spaces with generalized smoothness; Lorentz-Karamata spaces; compact embeddings
Summary:
We characterize compact embeddings of Besov spaces $B^{0,b}_{p,r}(\mathbb {R}^n)$ involving the zero classical smoothness and a slowly varying smoothness $b$ into Lorentz-Karamata spaces $L_{p, q; \bar {b}}(\Omega )$, where $\Omega $ is a bounded domain in $\mathbb {R}^n$ and $\bar {b}$ is another slowly varying function.
References:
[1] Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988). MR 0928802 | Zbl 0647.46057
[2] Caetano, A. M., Farkas, W.: Local growth envelopes of Besov spaces of generalized smoothness. Z. Anal. Anwendungen 25 (2006), 265-298. MR 2251954 | Zbl 1119.46032
[3] Caetano, A. M., Gogatishvili, A., Opic, B.: Sharp embeddings of Besov spaces involving only logarithmic smoothness. J. Approx. Theory 152 (2008), 188-214. DOI 10.1016/j.jat.2007.12.003 | MR 2422148 | Zbl 1161.46017
[4] Caetano, A. M., Gogatishvili, A., Opic, B.: Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness. J. Approx. Theory 163 (2011), 1373-1399. DOI 10.1016/j.jat.2011.03.005 | MR 2832731
[5] Caetano, A. M., Haroske, D. D.: Continuity envelopes of spaces of generalised smoothness: a limiting case; embeddings and approximation numbers. J. Function Spaces Appl. 3 (2005), 33-71. DOI 10.1155/2005/165785 | MR 2110047 | Zbl 1079.46019
[6] Caetano, A. M., Moura, S. D.: Local growth envelopes of spaces of generalized smoothness: the sub-critical case. Math. Nachr. 273 (2004), 43-57. DOI 10.1002/mana.200310195 | MR 2084956
[7] Caetano, A. M., Moura, S. D.: Local growth envelopes of spaces of generalized smoothness: the critical case. Math. Ineq. & Appl. 7 (2004), 573-606. MR 2097514 | Zbl 1076.46025
[8] Carro, M. J., Raposo, J. A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc. 187 (2007). MR 2308059 | Zbl 1126.42005
[9] Carro, M. J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112 (1993), 480-494. DOI 10.1006/jfan.1993.1042 | MR 1213148 | Zbl 0784.46022
[10] Dunford, N., Schwartz, J. T.: Linear Operators, part I. Interscience, New York (1957).
[11] Edmunds, D. E., Evans, W. D.: Hardy Operators, Functions Spaces and Embeddings. Springer, Berlin, Heidelberg (2004). MR 2091115
[12] Edmunds, D. E., Gurka, P., Opic, B.: Compact and continuous embeddings of logarithmic Bessel potential spaces. Studia Math. 168 (2005), 229-250. DOI 10.4064/sm168-3-4 | MR 2146125 | Zbl 1083.46017
[13] Edmunds, D. E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170 (2000), 307-355. DOI 10.1006/jfan.1999.3508 | MR 1740655 | Zbl 0955.46019
[14] Farkas, W., Leopold, H.-G.: Characterisations of function spaces of generalised smoothness. Ann. Mat. Pura Appl. 185 (2006), 1-62. DOI 10.1007/s10231-004-0110-z | MR 2179581 | Zbl 1116.46024
[15] Gol'dman, M. L.: Embeddings of Nikol'skij-Besov spaces into weighted Lorent spaces. Trudy Mat. Inst. Steklova 180 (1987), 93-95 Russian.
[16] Gol'dman, M. L.: Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces. Burenkov, V. I. (ed.) et al., The interaction of analysis and geometry. International school-conference on analysis and geometry, Novosibirsk, Russia, August 23-September 3, 2004. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 424 (2007), 53-81. MR 2316331
[17] Gol'dman, M. L., Kerman, R.: On optimal embedding of Calderón spaces and generalized Besov spaces. Tr. Mat. Inst. Steklova 243 (2003), 161-193 Russian English translation: Proc. Steklov Inst. Math. 243 (2003), 154-184. MR 2049469 | Zbl 1090.46022
[18] Gurka, P., Opic, B.: Sharp embeddings of Besov spaces with logarithmic smoothness. Rev. Mat. Complutense 18 (2005), 81-110. MR 2135533 | Zbl 1083.46018
[19] Gurka, P., Opic, B.: Sharp embeddings of Besov-type spaces. J. Comput. Appl. Math. 208 (2007), 235-269. DOI 10.1016/j.cam.2006.10.036 | MR 2347748 | Zbl 1132.46022
[20] Haroske, D. D., Moura, S. D.: Continuity envelopes of spaces of generalized smoothness, entropy and approximation numbers. J. Approximation Theory 128 (2004), 151-174. DOI 10.1016/j.jat.2004.04.008 | MR 2068695
[21] Kalyabin, G. A., Lizorkin, P. I.: Spaces of functions of generalized smoothness. Math. Nachr. 133 (1987), 7-32. DOI 10.1002/mana.19871330102 | MR 0912417 | Zbl 0636.46033
[22] Netrusov, Yu.: Imbedding theorems of Besov spaces in Banach lattices. J. Soviet. Math. 47 (1989), 2871-2881 Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova (LOMI) 159 (1987), 69-82. DOI 10.1007/BF01305216 | MR 0885077
[23] Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992). MR 1163193 | Zbl 0763.46025
[24] Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006). MR 2250142 | Zbl 1104.46001
Partner of
EuDML logo