Previous |  Up |  Next

Article

Keywords:
data assimilation; ensemble; asymptotics; convergence; filtering; exchangeable random variables
Summary:
Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample covariance follows from a weak law of large numbers for exchangeable random variables, the continuous mapping theorem gives convergence in probability of the ensemble members, and $L^{p}$ bounds on the ensemble then give $L^{p}$ convergence.
References:
[1] Anderson, B. D. O., Moore, J. B.: Optimal Filtering. Prentice-Hall Englewood Cliffs (1979). Zbl 0688.93058
[2] Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review 129 (1999), 2884-2903. DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
[3] Beezley, J. D.: High-dimensional data assimilation and morphing ensemble Kalman filters with applications in wildfire modeling. PhD. Thesis Department of Mathematical and Statistical Sciences University of Colorado Denver (2009),\hfil http://math.cudenver.edu/ {jbeezley/jbeezley\_thesis.pdf}. MR 2713197
[4] Billingsley, P.: Probability and Measure, 3rd edition. John Wiley & Sons Inc. New York (1995). MR 1324786
[5] Burgers, G., Leeuwen, P. J. van, Evensen, G.: Analysis scheme in the ensemble Kalman filter. Monthly Weather Review 126 (1998), 1719-1724. DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
[6] Butala, M. D., Frazin, R. A., Chen, Y., Kamalabadi, F.: Tomographic imaging of dynamic objects with the ensemble Kalman filter. IEEE Trans. Image Proces. 18 (2009), 1573-1587. DOI 10.1109/TIP.2009.2017996 | MR 2751057
[7] Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer Berlin (2007). MR 2555209 | Zbl 1157.86001
[8] Frazin, R. A., Butala, M. D., Kemball, A., Kamalabadi, F.: Time-dependent reconstruction of nonstationary objects with tomographic or interferometric measurements. Astrophys. J. 635 (2005), L197--L200. DOI 10.1086/499431
[9] Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98 (2007), 227-255. DOI 10.1016/j.jmva.2006.08.003 | MR 2301751 | Zbl 1105.62091
[10] Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press Cambridge (2003).
[11] Gland, F. Le, Monbet, V., Tran, V.-D.: Large Sample Asymptotics for the Ensemble Kalman Filter. Research Report RR-7014, INRIA, August 2009. \hfil http://hal.inria.fr/inria-00409060/en/
[12] Li, J., Xiu, D.: On numerical properties of the ensemble Kalman filter for data assimilation. Comput. Methods Appl. Mech. Eng. 197 (2008), 3574-3583. DOI 10.1016/j.cma.2008.03.022 | MR 2449176 | Zbl 1195.93137
[13] Mandel, J., Beezley, J. D.: An ensemble Kalman-particle predictor-corrector filter for non-Gaussian data assimilation. ICCS 2009. Lecture Notes in Computer Science, Vol. 5545 G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra, P. M. A. Sloot Springer (2009), 470-478. DOI 10.1007/978-3-642-01973-9_53 | MR 2572378
[14] Mandel, J., Cobb, L., Beezley, J. D.: On the convergence of the ensemble Kalman filter. University of Colorado Denver CCM Report 278, January 2009 \hfil http://www.arXiv.org/abs/0901.2951
[15] Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., Whitaker, J. S.: Ensemble square root filters. Monthly Weather Review 131 (2003), 1485-1490. DOI 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
[16] Vaart, A. W. Van der: Asymptotic Statistics. Cambridge University Press Cambridge (2000).
[17] Vodacek, A., Li, Y., Garrett, A. J.: Remote sensing data assimilation in environmental models. In: AIPR '08: Proceedings of the 2008 37th IEEE Applied Imagery Pattern Recognition Workshop IEEE Computer Society Washington (2008), 1-5.
Partner of
EuDML logo