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Abstract. Convergence of the ensemble Kalman filter in the limit for large ensembles to
the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample
covariance follows from a weak law of large numbers for exchangeable random variables,
the continuous mapping theorem gives convergence in probability of the ensemble members,
and L

p bounds on the ensemble then give L
p convergence.
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1. Introduction

Data assimilation uses statistical estimation to update the state of a running model

based on new data. Data assimilation is of great importance and widely used in many

disciplines including numerical weather prediction [10], ocean modeling [7], remote

sensing [17], and image reconstruction [8]. In these applications, the dimension of the

state is very high, often millions and more, because the state consists of the values of

a simulation on a computational grid in a spatial domain. Consequently, the classical

Kalman filter (KF), which requires maintaining the state covariance matrix, is no

longer feasible.

One of the most successful recent data assimilation methods for high-dimensional

problems is the ensemble Kalman filter (EnKF). EnKF is a Monte Carlo approxi-

mation of the KF, with the covariance in the KF replaced by the sample covariance

computed from an ensemble of realizations. Because the EnKF does not need to
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maintain the state covariance matrix, it can be implemented efficiently for high-

dimensional problems. Although the EnKF formulas rely on the assumption that

the distribution of the state and the data likelihood are normal, the ensemble can

robustly describe an arbitrary state probability distribution. Thus, in spite of errors

such as smearing of the state distribution towards normality [13], the EnKF is often

used for nonlinear systems.

One of the reasons for the popularity of the EnKF in applications is that the con-

vergence of EnKF with the ensemble size tends to be quite fast and reasonably small

ensembles (typically 25 to 100) are usually sufficient [7]. Convergence of the EnKF

can be further accelerated by localization, such as covariance tapering [9], which

improves the accuracy of the sample covariance. The EnKF converges rapidly in

these applications because the state vectors are not arbitrary; rather, they are dis-

cretizations of smooth functions on a spatial domain, and so they are the states of

an infinitely dimensional dynamical system. One explanation is that the state moves

along a low-dimensional attractor. Indeed, in weather simulations, the EnKF per-

formance can be further improved by a carefully chosen initial ensemble, which ap-

proximately covers the attractor well [10]. Another explanation is that a smooth

random field can be well approximated by a linear combination of a small number

of smooth functions with random coefficients, such as a truncated random Fourier

series or Karhunen-Loève expansion. Indeed, if the state is not smooth enough, the

convergence of the EnKF deteriorates [3] and large ensembles would be needed for

acceptable accuracy.

A large body of literature on the EnKF and variants exists, but rigorous proba-

bilistic analysis is lacking. It is commonly assumed that the ensemble is a sample

(that is, i.i.d.) and that it is normally distributed. Although the resulting anal-

yses played an important role in the development of EnKF, both assumptions are

false. The ensemble covariance is computed from all ensemble members together,

thus introducing dependence, and the EnKF formula is a nonlinear function of the

ensemble, thus destroying the normality of the ensemble distribution.

For example, the analysis in [5] is based on the comparison of the covariance of

the analysis ensemble and the covariance of the filtering distribution. The paper [9]

notes that if the ensemble sample covariance is a consistent estimator, then Slutsky’s

theorem yields the convergence in probability of the gain matrix. The paper [12]

studies the interplay of numerical and stochastic errors. All of these analyses assume

that the ensemble covariance converges in some sense in the limit for large ensembles,

but a rigorous justification has not yet become available.

This paper provides a rigorous proof that the EnKF converges to the KF in the

limit for large ensembles and for normal state probability distributions and normal

data likelihoods. The present analysis does not assume that the ensemble mem-
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bers are independent or normally distributed. The ensemble members are shown

to be exchangeable random variables bounded in all Lp, p ∈ [1,∞), which provides

properties that replace independence and normality. An argument using uniform

integrability and the continuous mapping theorem is then possible.

The result is valid for the EnKF version of Burgers, van Leeuven, and Evensen [5]

in the case of constant state space dimension, a linear model, normal data likelihood

and initial state distributions, and ensemble size going to infinity. This EnKF version

involves randomization of data. Efficient variants of EnKF without randomization

exist [2], [15], but they are not the subject of this paper.

Probabilistic analysis of the performance of the EnKF on nonlinear systems, for

non-normal state probability distributions, as well as the analysis of the speed of

convergence of the EnKF to the KF and the dependence of the required ensemble

size on the state dimension, are outside of the scope of this paper and left to future

research. Some computational experiments and heuristic explanations can be found

in [3].

After the original preprint of this paper was completed [14], some related work

became available. The proof of EnKF convergence in [6] has a gap; it assumes that

certain covariances derived from the ensemble exist, which is not guaranteed without

an L2 bound. The proof in [11] is related and also uses a priori Lp bounds, but it

appears to be much longer and more complicated in order to obtain further analysis.

2. Preliminaries

The Euclidean norm of column vectors in R
m, m > 1, and the induced matrix

norm are denoted by ‖·‖, and ⊤ is the transpose. The stochastic Lp norm of a random

element X is ‖X‖p = (E(‖X‖p))1/p. The jth entry of a vector X is [X ]j and the i, j

entry of a matrix Y ∈ R
m×n is [Y ]ij . Convergence in probability is denoted by

P
→.

We denote by

XN = [XNi]
N
i=1 = [XN1, . . . , XNN ],

with various superscripts and for various m > 1, an ensemble of N random elements

in R
m, called members. Thus, an ensemble is a random m × N matrix with the en-

semble members as columns. Given two ensembles XN and YN , the stacked ensemble

[XN ; YN ] is defined as the block random matrix

[XN ; YN ] =

[

XN

YN

]

=

[[

XN1

YN1

]

, . . . ,

[

XNN

YNN

]]

= [XNi; YNi]
N
i=1.

If all the members ofXN are identically distributed, we write E(XN1) and Cov(XN1)

for their common mean vector and covariance matrix. The ensemble sample mean

535



and ensemble sample covariance matrix are the random elements XN = N−1
N
∑

i=1

XNi

and C(XN ) = XNX⊤
N − XNX

⊤

N . All convergence is for N → ∞.

We will work with ensembles such that the joint distribution of the ensemble XN

is invariant under permutation of the ensemble members. Such an ensemble is called

exchangeable. That is, an ensemble XN , N > 2, is exchangeable if and only if

Pr(XN ∈ B) = Pr(XNΠ ∈ B) for every Borel set B ⊂ R
m×N and every permutation

matrix Π ∈ R
N×N . The covariance between any two members of an exchangeable

ensemble is the same, Cov(XNi, XNj) = Cov(XN1, XN2), if i 6= j.

Lemma 1. Suppose XN and DN are exchangeable, the random elements XN and

DN are independent, and YNi = F (XN , XNi, DNi), i = 1, . . . , N , where F is mea-

surable and permutation invariant in the first argument, i.e. F (XNΠ, XNi, DNi) =

F (XN , XNi, DNi) for any permutation matrix Π. Then YN is exchangeable.

P r o o f. Write YN = F(XN , DN ), where

F(XN , DN ) = [F (XN , XN1, DN1), F (XN , XN2, DN2), . . . , F (XN , XNN , DNN )].

Let Π be a permutation matrix. Then YNΠ = F(XNΠ, DNΠ). Because XN is

exchangeable, the distributions of XN and XNΠ are identical. Similarly, the distri-

butions of DN and DNΠ are identical. Since XN and DN are independent, the joint

distributions of (XN , DN ) and (XNΠ, DNΠ) are identical. Thus, for any Borel set

B ⊂ R
n×N ,

Pr(YNΠ ∈ B) = E(1B(YNΠ)) = E(1B(F(XNΠ, DNΠ)))

= E(1B(F(XN , DN ))) = Pr(YN ∈ B),

where 1B stands for the characteristic function of B. Hence, YN is exchangeable. �

We now prove a weak law of large numbers for nearly i.i.d. exchangeable ensembles.

Lemma 2. If for all N , XN , UN are ensembles of random variables, [XN ; UN ] is

exchangeable, Cov(UNi, UNj) = 0 for all i 6= j, UN1 ∈ L2 is the same for all N , and

XN1 → UN1 in L2, then XN
P
→ E(UN1).

P r o o f. Since XN is exchangeable, Cov(XNi, XNj) = Cov(XN1, XN2) for all

i, j = 1, . . . , N , i 6= j. Since XN − UN is exchangeable, also XN2 − UN2 → 0

in L2. Then, using the identity Cov(X, Y ) = E(XY ) − E(X)E(Y ) and the Cauchy

inequality for the L2 inner product E(XY ), we have

|Cov(XN1, XN2) − Cov(UN1, UN2)|

6 2‖XN1‖2‖XN2 − UN2‖2 + 2‖UN2‖2‖XN1 − UN1‖2,
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so Cov(XN1, XN2) → 0. By the same argument, Var(XN1) → Var(UN1) < ∞. Now

E(XN ) = E(XN1) → E(UN1) from XN1 − UN1 → 0 in L2, and

Var(XN ) =
1

N2

N
∑

i=1

Var(XNi) +

N
∑

i,j=1,i6=j

Cov(XNi, XNj)

=
1

N
Var(XN1) +

(

1 −
1

N

)

Cov(XN1, XN2) → 0,

and the conclusion follows from the Chebyshev inequality. �

The convergence of the ensemble sample covariance follows.

Lemma 3. If for all N , XN , UN are ensembles of random elements in R
n,

[XN ; UN ] is exchangeable, UN are i.i.d., UN1 ∈ L4 is the same for all N , and

XN1 → UN1 in L4, then XN
P
→ E(UN1) and C(XN )

P
→ Cov(UN1).

P r o o f. From Lemma 2, it follows that [XN ]j
P
→ [E(UN1)]j for each entry

j = 1, . . . , n, so XN
P
→ E(UN1). Let YNi = XNiX

⊤
Ni, so that C(XN ) = Y N −

XNX
⊤

N . Each entry of [YNi]jl = [XNi]j [XNi]l satisfies the assumptions of Lemma 2,

so [YNi]jl
P
→ E([UN1U

⊤
N1]jl). Convergence of the entries [XNX

⊤

N ]jl = [XN ]j [XN ]l
to E([UN1]jl)E([U⊤

N1]jl) follows from the already proved convergence of XN and the

continuous mapping theorem [16, p. 7]. Applying the continuous mapping theorem

again, we get C(XN )
P
→ Cov(UN1). �

3. Formulation of the EnKF

Consider an initial state given as the random variable U (0). In step k, the

state U (k−1) is advanced in time by applying the model M (k) to obtain U (k),f =

M (k)(U (k−1)), called the prior or the forecast, with probability density function

(pdf) pU(k),f . The data in step k are given as measurements d(k) with a known error

distribution, and expressed as the data likelihood p(d(k)|u). The new state U (k) con-

ditional on the data, called the posterior or the analysis, then has the density pU(k)

given by the Bayes theorem,

pU(k)(u) ∝ p(d(k)|u)pU(k),f (u),

where ∝ means proportional. This is the discrete-time filtering problem. The distri-

bution of U (k) is called the filtering distribution.
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Assume that U (0) ∼ N(u(0), Q(0)), the model is linear, M (k) : u 7→ A(k)u + b(k),

and the data likelihood is normal conditional on given state u(k),f ,

p(d(k)|u(k),f ) ∝ e(−1/2)(H(k)u(k),f−d(k))⊤R(k)−1
(H(k)u(k),f−d(k)),

where H(k) is the given observation matrix and R(k) is the given data error covari-

ance. The data error is assumed to be independent of the model state. Then the

filtering distribution is normal, U (k) ∼ N(u(k), Q(k)), and it satisfies the KF recur-

sions [1]

u(k),f = E(U (k),f ) = A(k)u(k) + b(k), Q(k),f = Cov U (k),f = A(k)⊤Q(k)A(k),(3.1)

u(k) = u(k),f + K(k)(d(k) − H(k)u(k),f ), Q(k) = (I − K(k)H(k))Q(k),f ,(3.2)

where the Kalman gain matrix K(k) is given by

(3.3) K(k) = Q(k),fH(k)⊤(H(k)Q(k),fH(k)⊤ + R(k))−1.

The EnKF is obtained by replacing the exact covariance Q(k) by the ensemble

sample covariance and adding noise to the data in order to avoid a shrinking of the

ensemble spread and to obtain the correct filtering covariance [5], cf. Lemma 4 below.

Let U
(0)
i ∼ N(u(0), Q(0)) and D

(k)
i ∼ N(d(k), R(k)) be independent for all k, i > 1.

Given N , choose the initial ensemble and the perturbed data as the first N terms

of the respective sequence, U
(0)
Ni = U

(0)
i , i = 1, . . . , N , D

(k)
Ni = D

(k)
i , i = 1, . . . , N ,

k = 1, 2, . . . The ensembles produced by EnKF are X
(0)
N = U

(0)
N and

X
(k),f
Ni = M (k)(X

(k−1)
Ni ), i = 1, . . . , N,(3.4)

X
(k)
N = X

(k),f
N + K

(k)
N (D

(k)
N − H(k)X

(k),f
N ),(3.5)

where K
(k)
N is the ensemble sample gain matrix,

(3.6) K
(k)
N = Q

(k),f
N H(k)⊤(H(k)Q

(k),f
N H(k)⊤ + R(k))−1, Q

(k),f
N = C(X

(k),f
N ).

Our analysis of the EnKF is based on the observation that the ensembles X
(k)
N are

a perturbation of auxiliary ensembles U
(k)
N . The ensembles U

(k)
N are obtained from

the same initial ensemble by applying the KF formulas to each ensemble member

separately and using the same corresponding member of perturbed data,

U
(k),f
Ni = M (k)(U

(k−1)
Ni ), i = 1, . . . , N,(3.7)

U
(k)
N = U

(k),f
N + K(k)(D

(k)
N − H(k)U

(k),f
N ).(3.8)

The auxiliary ensembles U
(k)
N are introduced for theoretical purposes only and they

do not play any role in the EnKF algorithm. The next lemma shows that U
(k)
N is a

sample from the filtering distribution.

Lemma 4. For all k = 1, 2, . . ., U
(k)
N is i.i.d. and U

(k)
N1 ∼ N(u(k), Q(k)).
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P r o o f. The statement is true for k = 0 by definition of U
(0)
N . Assume that it

is true for k − 1 in place of k. The ensemble U
(k)
N is i.i.d. and normally distributed,

because it is the image under a linear map of the normally distributed i.i.d. ensemble

with members [U
(k−1)
Ni , D

(k)
Ni ], i = 1, . . . , N . Further, D

(k)
N and U

(k),f
Ni are independent,

so from [5, Eq. (15) and (16)], U
(k)
N1 has the correct mean and covariance, which

uniquely determines the normal distribution of U
(k)
N1 . �

4. Convergence analysis

Lemma 5. There exist constants c(k, p) for all k and all p ∈ [1,∞) such that

‖X
(k)
Ni ‖p 6 c(k, p) and ‖K

(k)
N ‖p 6 c(k, p) for all N .

P r o o f. For k = 0, each X
(k)
Ni is normal. Assume ‖X

(k−1)
Ni ‖p 6 c(k − 1, p) for

all N . Then

‖X
(k),f
Ni ‖p = ‖A(k)X

(k−1)
Ni + b(k)‖p 6 ‖A(k)‖‖X

(k−1)
Ni ‖p + ‖b(k)‖ 6 const(k, p).

By Jensen’s inequality, for any XN ,

∥

∥

∥

∥

1

N

N
∑

i=1

XNi

∥

∥

∥

∥

p

6
1

N

N
∑

i=1

‖XNi‖p.

This gives ‖X
(k),f

N ‖p 6 const(k, p) and

‖Q
(k),f
N ‖p 6

1

N
‖X

(k),f
N1 X

(k),f⊤
N1 ‖p +

1

N2
‖X

(k),f
N1 ‖2

p

6
1

N
‖X

(k),f
N1 ‖2

2p +
1

N2
‖X

(k),f
N1 ‖2

p 6 const(k, p),

since from the Cauchy inequality

(4.1) ‖WZ‖p 6 E(‖W‖p‖Z‖p)1/p

6 E(‖W‖2p)1/(2p)E(‖Z‖2p)1/(2p) = ‖W‖2p‖Z‖2p,

for any compatible random matrices W and Z. Since H(k)Q
(k),f
N H(k)⊤ is symmetric

positive semidefinite and R(k) is symmetric positive definite, it holds that

‖(H(k)Q
(k),f
N H(k)⊤ + R(k))−1‖ 6 ‖(R(k))−1‖ 6 const(k),

which, together with the bound on ‖Q
(k),f
N ‖p, gives

‖K
(k)
N ‖p 6 ‖Q

(k)
N ‖p const(k) 6 const(k, p).

539



Finally, we obtain the desired bound

‖X
(k)
Ni ‖p 6 ‖X

(k),f
Ni ‖p + ‖K

(k)
N D

(k)
Ni ‖p + ‖K

(k)
N H(k)X

(k),f
Ni ‖p

6 const(k, p)(‖X
(k),f
Ni ‖p + ‖K

(k)
N ‖p + ‖K

(k)
N ‖2p‖X

(k),f
Ni ‖2p) 6 c(k, p),

using again (4.1). �

Theorem 1. For all k, [XN ; UN ] is exchangeable and X
(k)
Ni → U

(k)
Ni in Lp for all

p ∈ [1,∞), where UN is i.i.d. with the filtering distribution.

P r o o f. The ensembles U
(k)
N are obtained by linear mapping of the i.i.d. initial

ensemble U
(0)
N , so they are i.i.d. For k = 1, we have X

(0)
N = U

(0)
N , [X

(0)
N ; U

(0)
N ] is

exchangeable, and XNi = UNi. Suppose the statement holds for k − 1 in place of k.

The ensemble members are given by a recursion of the form

[X
(k)
Ni ; U

(k)
Ni ] = F (k)(C(X

(k−1)
N ), [X

(k−1)
Ni ; U

(k−1)
Ni ], D

(k)
Ni ).

The ensemble sample covariance matrix C(X
(k−1)
N ) is invariant to a permutation of

ensemble members, so [X
(k)
N ; U

(k)
N ] is exchangeable by Lemma 1. Since X

(k),f
N and

U
(k),f
N satisfy the assumptions of Lemma 3, it follows that C(X

(k),f
N )

P
→ Cov U

(k),f
N1

and K
(k)
N

P
→ K(k). Thus, comparing (3.5) and (3.8), we have that X

(k)
Ni

P
→ U

(k)
Ni , by

the continuous mapping theorem. Let p ∈ [1,∞). Since the sequence {X
(k)
Ni }

∞
N=1 is

bounded in Lp by Lemma 5 and X
(k)
Ni

P
→ U

(k)
Ni , it follows that X

(k)
Ni → U

(k)
Ni in Lq for

all 1 6 q < p by uniform integrability [4, p. 338]. �

Using Lemma 3 and uniform integrability again, it follows that the ensemble mean

and covariance converge to the filtering mean and covariance.

Corollary 1. X
(k)

N → u(k) and C(X
(k)
N ) → Q(k) in Lp for all p ∈ [1,∞), where

u(k) and Q(k) are the mean and the covariance of the filtering distribution.
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