[1] Chen, C. M., Huang, Y. Q.: High Accuracy Theory of Finite Element Methods. Hunan Science Press Hunan (1995), Chinese.
[2] Cairlet, P. G.: The Finite Element Methods for Elliptic Problems. North-Holland Publishing Amsterdam (1978).
[4] Křížek, M., Neittaanmäki, P., (eds.), R. Stenberg:
Finite Element Methods. Superconvergence, Postprocessing, and a Posteriori Estimates. Lecture Notes in Pure and Appl. Math., Vol. 196. Marcel Dekker New York (1998).
MR 1602809
[5] Lin, Q., Zhu, Q. D.: The Preprocessing and Postprocessing for Finite Element Methods. Shanghai Sci. & Tech. Publishers Shanghai (1994), Chinese.
[6] Oden, J. T., Brauchli, H. J.:
On the calculation of consistent stress distributions in finite element applications. Int. J. Numer. Methods Eng. 3 (1971), 317-325.
DOI 10.1002/nme.1620030303
[7] Turner, M. J., Martin, H. C., Weikel, B. C.: Further developments and applications of stiffness method. Matrix Meth. Struct. Analysis 72 (1964), 203-266.
[8] Wahlbin, L. B.:
Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, Vol. 1605. Springer Berlin (1995).
MR 1439050
[9] Wilson, E. L.: Finite element analysis of two-dimensional structures. PhD. Thesis University of California Berkeley (1963).
[11] Zienkiewicz, O. C., Zhu, J. Z.:
The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992), 1331-1364.
DOI 10.1002/nme.1620330702 |
MR 1161557
[12] Zhang, Z.: Recovery techniques in finite element methods. Adaptive Computations: Theory and Algorithms T. Tang, J. C. Xu Science Press Beijing (2007).
[14] Zhang, T., Lin, Y. P., Tait, R. J.:
The derivative patch interpolation recovery technique for finite element approximations. J. Comput. Math. 22 (2004), 113-122.
MR 2027918
[15] Zhang, T., Li, C. J., Nie, Y. Y.:
Derivative superconvergence of linear finite elements by recovery techniques. Dyn. Contin. Discrete Impuls. Syst., Ser. A 11 (2004), 853-862.
MR 2077127 |
Zbl 1059.65096
[16] Zhang, T.: Finite Element Methods for Evolutionary Integro-Differential Equations. Northeastern University Press Shenyang (2002), Chinese.
[17] Zhu, Q. D., Meng, L. X.: New structure of the derivative recovery technique for odd-order rectangular finite elements and ultraconvergence. Science in China, Ser. A, Mathematics 34 (2004), 723-731 Chinese.
[18] Zhu, Q. D., Lin, Q.: Superconvergence Theory of Finite Element Methods. Hunan Science Press Hunan (1989), Chinese.