[1] Armstrong S., Biquard O.:
Einstein metrics with anisotropic boundary behaviour. arXiv:0901.1051v1 [math.DG].
MR 2646355
[2] Atiyah M., Berndt J.:
Projective Planes, Severi Varieties and Spheres. Surveys in Differential Geometry, International Press of Boston Inc., 2003.
MR 2039984 |
Zbl 1057.53040
[4] Biquard O.:
Asymptotically Symmetric Einstein Metrics. SMF/AMS Texts and Monographs, American Mathematical Society, Providence, 2006.
MR 2260400 |
Zbl 1112.53001
[5] Bourbaki N.:
Lie Groups and Lie Algebras. Chapters 4–6. Elements of Mathematics, Springer, Berlin, 2002.
MR 1890629 |
Zbl 1145.17001
[6] Čap A., Slovák J.:
Parabolic Geometries: Background and General Theory. Mathematical Surveys and Monographs, AMS Bookstore, 2009.
MR 2532439
[7] Dray T., Manogue C.A.:
Octonionic Cayley spinors and $\mathrm{E}_6$. Comment. Math. Univ. Carolin. 51 (2010), 193–207.
MR 2682473
[8] Friedrich T.:
Weak Spin$(9)$-structures on $16$-dimensional Riemannian manifolds. Asian J. Math. 5 (2001), 129–160; arXiv:math/9912112v1 [math.DG].
MR 1868168 |
Zbl 1021.53028
[9] Goodman R., Wallach N.R.:
Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge, 1998.
MR 1606831 |
Zbl 1173.22001
[10] Harvey F.R.:
Spinors and Calibration. Academic Press, San Diego, 1990.
MR 1045637
[12] Humphreys J.E.:
Linear Algebraic Groups. Graduate Texts in Mathematics, 21, Springer, 1975.
MR 0396773 |
Zbl 0471.20029
[13] Jacobson N.:
Structure and Representations of Jordan Algebras. AMS Bookstore, 2008.
Zbl 0218.17010
[16] Krýsl S.:
Classification of $\mathfrak{p}$-homomorphisms between higher symplectic spinors. Rend. Circ. Mat. Palermo (2), Suppl. no. 79 (2006), 117–127.
MR 2287131
[17] Krýsl S.:
BGG diagrams for contact graded odd dimensional orthogonal geometries. Acta Univ. Carolin. Math. Phys. 45 (2004), no. 1, 67–77.
MR 2109695
[18] Landsberg J.M., Manivel L.:
On the projective geometry of rational homogenous varieties. Comment. Math. Helv. 78 (2003), no. 1, 65–100.
MR 1966752
[20] van Leeuwen M.A.A., Cohen A.M., Lisser B.:
LiE, A Package for Lie Group Computations. Computer Algebra Nederland, Amsterdam, 1992, available at
http://www-math.univ-poitiers.fr/$\sim $maavl/LiE/.
[22] Springer T.A., Veldkamp F.D.:
Octonions, Jordan Algebras and Exceptional Groups. Springer Monographs in Mathematics, Springer, Berlin, 2000.
MR 1763974 |
Zbl 1087.17001
[23] Yokota I.:
Exceptional Lie groups. arXiv.org:0902.0431 [math.DG], 2009.
Zbl 1145.22002