Previous |  Up |  Next

Article

Keywords:
$\kappa$-Ohio complete; compactification; subspace; product
Summary:
We study closed subspaces of $\kappa$-Ohio complete spaces and, for $\kappa$ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of $\kappa$-Ohio complete spaces. We prove that, if the cardinal $\kappa^+$ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not $\kappa$-Ohio complete. As a consequence, we show that, if $\kappa$ is less than the first weakly inaccessible cardinal, then neither the space $\omega^{\kappa^+}$, nor the space $\mathbb{R}^{\kappa^+}$ is $\kappa$-Ohio complete.
References:
[1] Arhangel'skii A.V.: Remainders in compactifications and generalized metrizability properties. Topology Appl. 150 (2005), 79–90. DOI 10.1016/j.topol.2004.10.015 | MR 2133669 | Zbl 1075.54012
[2] Basile D.: $\kappa $-Ohio completenss and related problems. Doctoral Thesis, Vrije Universiteit, Amsterdam, 2009.
[3] Basile D., van Mill J.: Ohio completeness and products. Topology Appl. 155 (2008), no. 4, 180–189. DOI 10.1016/j.topol.2007.09.005 | MR 2380256 | Zbl 1147.54012
[4] Basile D., van Mill J., Ridderbos G.J.: Sum theorems for Ohio completeness. Colloq. Math. 113 (2008), 91–104. DOI 10.4064/cm113-1-6 | MR 2399666 | Zbl 1149.54014
[5] Basile D., van Mill J., Ridderbos G.J.: $\kappa $-Ohio completeness. J. Math. Soc. Japan 61 (2009), no. 4, 1293–1301. DOI 10.2969/jmsj/06141293 | MR 2588512 | Zbl 1186.54024
[6] Engelking R.: General Topology. second ed., Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[7] Glicksberg I.: Stone-Čech compactifications of products. Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 0105667 | Zbl 0089.38702
[8] Mycielski J.: $\alpha $-incompactness of $N^\alpha $. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 437–438. MR 0211871
[9] Okunev O., Tamariz-Mascarúa A.: On the Čech number of $C_p(X)$. Topology Appl. 137 (2004), no. 1–3, 237–249; IV Iberoamerican Conference on Topology and its Applications. DOI 10.1016/S0166-8641(03)00213-X | MR 2057890 | Zbl 1048.54010
Partner of
EuDML logo