Article
Keywords:
$\kappa$-Ohio complete; compactification; subspace; product
Summary:
We study closed subspaces of $\kappa$-Ohio complete spaces and, for $\kappa$ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of $\kappa$-Ohio complete spaces. We prove that, if the cardinal $\kappa^+$ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not $\kappa$-Ohio complete. As a consequence, we show that, if $\kappa$ is less than the first weakly inaccessible cardinal, then neither the space $\omega^{\kappa^+}$, nor the space $\mathbb{R}^{\kappa^+}$ is $\kappa$-Ohio complete.
References:
[2] Basile D.: $\kappa $-Ohio completenss and related problems. Doctoral Thesis, Vrije Universiteit, Amsterdam, 2009.
[7] Glicksberg I.:
Stone-Čech compactifications of products. Trans. Amer. Math. Soc. 90 (1959), 369–382.
MR 0105667 |
Zbl 0089.38702
[8] Mycielski J.:
$\alpha $-incompactness of $N^\alpha $. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 437–438.
MR 0211871