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Hyperplane section OP2
0 of the complex

Cayley plane as the homogeneous space F4/P4

Karel Pazourek, Vı́t Tuček, Peter Franek

Abstract. We prove that the exceptional complex Lie group F4 has a transitive
action on the hyperplane section of the complex Cayley plane OP2. Although
the result itself is not new, our proof is elementary and constructive. We use an
explicit realization of the vector and spin actions of Spin(9,C) ≤ F4. Moreover,
we identify the stabilizer of the F4-action as a parabolic subgroup P4 (with
Levi factor B3T1) of the complex Lie group F4. In the real case we obtain an

analogous realization of F4
(−20)/P4.

Keywords: Cayley plane, octonionic contact structure, twistor fibration, para-
bolic geometry, Severi varieties, hyperplane section, exceptional geometry

Classification: Primary 32M12; Secondary 14M17

1. Introduction

The real octonionic projective plane OP2
R, also called Cayley plane or octave

plane, has been thoroughly treated in the literature. It appears in numerous
contexts. It is a projective plane where the Desargues axiom does not hold. It
was firstly considered by Ruth Moufang [21], who found a relation of the so called
little Desargues axiom and the alternativity of the coordinate ring. It is well
known that OP2

R is a Riemanian symmetric manifold F4/Spin(9). Due to its
relation to the exceptional Jordan algebra J3(O), there is also a connection of
this plane to a model of quantum mechanics considered by Neumann, Jordan and
Wigner [14]. More recently, the authors of [7] show that the Cayley plane consists
of normalized solutions of a Dirac equation. For more details and connections
with physics we refer to the article by Baez [3].

It is possible to mimic the construction of classical projective plane RP2 via
equivalence classes of triples (see [11]) also in the case ofOP2

R, but usually Freuden-
thal’s approach via the exceptional Jordan algebra J3(O) is used. The idea is that
lines in space correspond to projectors with one-dimensional image. Hence the
Cayley plane can be defined as elements of (real) projectivization of J3(O) of rank
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one. Now the rank for octonionic matrices is a bit tricky due to the nonassocia-
tivity and requires the definition of Jordan cross product of these matrices. For
details we refer to Jacobson’s monograph [13]. There one can also find a classifi-
cation of orbits of the automorphism group of J3(O) (which is F4) from which it
follows that OP2

R is a homogeneous space. (The isotropy subgroup is determined
for example in [10], [22].)

In fact, Jacobson’s book [13] treats octonionic algebras over general field and
hence we get the definition of the complex Cayley plane OP2 as well. This space
is also of geometric interest, as it is an exceptional member of the Severi varieties
— the unique extremal varieties for secant defects. For details see [18], [19].

Now, let us consider the intersection of the complex Cayley plane OP2 with
the hyperplane given by traceless matrices J0 := {A ∈ J3(OC) |TrA = 0}. The
resulting space is studied in [18], [19], where the authors call it the generic hyper-
plane section and denote it by OP2

0. It is a total space of a certain twistor fibration
over the real Cayley plane (see [2], [8]). Because OP2

0 is a complex projective vari-
ety, the stabilizer is a parabolic subgroup of F4. The authors of [18] state that the
isomorphism OP2

0 = F4/P4 is suggested by ‘geometric folding’. A rigorous proof
of this isomorphism can be gleaned from [13]. This proof however requires a lot
of the theory of nonassociative algebras, most notably the Jordan coordinization
theorem. Quite a short proof can be given using the Borel fixed point theorem.
In a hope to make OP2

0 more accessible to geometrically inclined audience, we
present a constructive proof of the transitivity of the action of F4 on OP2

0 based
on the representation theory of complex spin groups. From the theory of nonas-
sociative algebras only Artin’s theorem is needed. Following the approach of [10],
we explicitly realize the spin groups Spin(9,C) and Spin(8,C) as subgroups of F4

and we use the description of their actions to find the reduction of an arbitrary
element to a previously chosen one.

It is well known that the Cartan geometry modeled on the pair (F4,P4) is rigid,
i.e. any regular normal Cartan geometry of this type is locally isomorphic to the
homogeneous model. The real version of this pair corresponding to the group

F
(−20)
4 appears as a conformal infinity of the Einstein space OH2 [4]. The geom-

etry obtained is called ‘octonionic-contact’, because there is a naturally defined
eight-dimensional maximally nonintegrable subbundle of the tangent bundle. The
contact geometry in the classical sense (studied for example in [15], [16]) is also
present among the homogeneous spaces of the group F4 — namely the one whose
isotropy group is the parabolic subgroup corresponding to the other ‘outer’ simple
root of the Lie algebra of f4.

After some necessary definitions in Section 2, we describe explicitly the presen-
tations of Spin(9,C) and Spin(8,C) inside of End(O2)⊗RC in Section 3. We also
explicitly describe vector and spinor representations of Spin(9,C) in such a way
that their image is inside F4. Section 3 continues with the proof of the transitivity
of the action of F4 on OP2

0. We conclude by dealing with the real case. In the
last section we compute the stabilizer of a point.



Hyperplane section OP2
0 of the complex Cayley plane as the homogeneous space F4/P4 537

2. Notations and definitions

2.1 Complexified octonions and the hyperplane section. For a compre-
hensive reference on octonionic algebras over any field we refer to [22]. We
denote by O the octonionic algebra over the field of complex numbers. The
complex-valued ‘norm’ on O is denoted by N . The algebra O is normed (N(ab) =
N(a)N(b)) but it fails to be a division ring, since N is isotropic. This algebra is
not associative. Nevertheless, it is alternative, which means that the trilinear form
(called the associator) [u, v, w] 7→ (uv)w − u(vw) is completely skew-symmetric.
Later on we will use the so called Artin’s theorem which states that any subalge-
bra of an alternative algebra generated by two elements is associative. It follows
that products involving only two elements can be written without parenthesis
unambiguously.

The symbol Lu denotes the operator of left multiplication by u, i.e. Lu(v) := uv
for any v ∈ O. Note that LuLv 6= Luv in general due to the nonassociativity of
octonionic algebras.

Since there is up to isomorphism only one octonionic algebra over C we can
think of O in the following way: O = OR ⊗ C = OR ⊗R C, where OR is the
classical real algebra of octonions ([3]). The multiplication on this tensor product
is canonically defined by

(o1 ⊗ z1)(o2 ⊗ z2) := o1o2 ⊗ z1z2 for o1, o2 ∈ O, z1, z2 ∈ C

and conjugation is given by o⊗ z := ō⊗ z.
The multiplication of an arbitrary element o⊗z ∈ O by a complex number w is

understood in the sense of multiplication by element 1⊗w, i.e. w(o⊗z) := o⊗(wz).
We identify the elements of R⊗ C with complex numbers under the canonical
isomorphism r ⊗ w 7→ rw, for r ∈ R, w ∈ C. The real and imaginary parts of
o⊗ z are defined to be (ℜ o)⊗ z and (ℑ o)⊗ z, where ℜ o and ℑ o are the real and
purely imaginary part of o respectively.

The mentioned complex valued quadratic form N is given by

N(o⊗ z) := oōzz, o ∈ O, z ∈ C.

Following Springer [22], we denote by 〈·, ·〉 the double of the bilinear form associ-
ated to N , 〈x, y〉 = N(x+y)−N(x)−N(y). An octonion u ∈ O is pure imaginary
if and only if 〈u, 1〉 = 0.

For later use, we will record here several useful identities which hold in any
octonionic algebra and whose proof can also be found in [22]

〈xy, z〉 = 〈y, x̄z〉
x(x̄y) = N(x)y(1a)

u(x̄y) + x(ūy) = 〈u, x〉y(1b)

u(x̄(uy)) = ((ux̄)u)y.(1c)
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Due to the nonassociativity of the algebras involved we need to make clear dis-
tinction between associative algebras of C-linear endomorphisms, which we denote
by End, and the possibly nonassociative algebras of n × n matrices with entries
in some algebra F which are denoted by M(n,F).

The conjugation on O naturally defines the conjugation on M(n,O). The
conjugate of an element A ∈ M(n,O) is denoted by Ā. The symbol Herm(n,O)
stands for the set of n× n hermitian matrices over O, i.e.

Herm(n,O) = {A ∈ M(n,O)|ĀT = A}.

We denote the subspace of trace-free matrices by lower index Herm0(n,O). All
tensor products in this article are taken over the real numbers.

The complex exceptional Jordan algebra J3(O) is the vector space Herm(3,O)
endowed with the symmetric product ◦ : Herm(3,O)×Herm(3,O) → Herm(3,O)
defined by A ◦B := 1

2 (AB +BA).
Now we define the basic object of our interest.

Definition 2.1.1. The hyperplane section of the complex Cayley plane OP2
0 is

the projectivization over C of the following subset of J3(O)

ÔP2
0 :=

{
A ∈ Herm(3, O)

∣∣ A2 = 0, trA = 0, A 6= 0
}
.

2.2 The spin groups. For an n-dimensional complex vector space V and a
nondegenerate quadratic form N on V, we denote the corresponding Clifford
algebra by Cℓ(V, N) (our convention is vv = −N(v)). The spin group of Cℓ(V, N)
is denoted by Spin(V, N). It is generated inside Cℓ(V, N) by products uv, u, v ∈ V
where N(u) = N(v) = 1. By Spin(n,C) we denote the spin group associated to
the standard quadratic form

∑n
i=1 z

2
i on Cn.

For w ∈ C we define the generalized complex sphere

Sn−1(w) = {0 6= z ∈ V |N(z) = w2}.

As a consequence of Witt’s theorem we have

Lemma 2.2.1. The group Spin(n,C) acts transitively via the vector representa-
tion on the generalized complex spheres.

2.3 Complex Lie algebra f4. The complex exceptional Lie group F4 can be
defined as the automorphism group of the complex exceptional Jordan algebra
(J3(O), ◦) (see [22]). In other words F4 is the subgroup of GL(27,C) such that
g ∈ F4 if and only if g(A ◦B) = gA ◦ gB for every A,B ∈ Herm(3,O).

The action of F4 preserves the trace on Herm(3,O). This can be easily seen
from the equality

TrA =
1

3
Tr (B 7→ A ◦B).
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It is easy to verify that the action of O(3,C) on Herm(3,O) given by

O(3, C) ∋ g 7−→ (A 7→ gAgT ), A ∈ Herm(3,O)

defines an injective group homomorphism O(3,C) →֒ F4.
Now we present basic facts about the complex simple Lie algebra f4 of the

group F4. We shall use these facts as well as the properties of the root system of
the Lie algebra f4 in the last section of this text. Details can be found in [5].

There exist a choice of the Cartan subalgebra h of f4, an orthonormal (with
respect to the Killing form of f4) basis {ǫi}4i=1 of h∗ and a choice of simple roots

∆ =

{
α1 = ǫ2 − ǫ3, α2 = ǫ3 − ǫ4, α3 = ǫ4, α4 =

1

2
(ǫ1 − ǫ2 − ǫ3 − ǫ4)

}
.

In this convention the Dynkin diagram is�1 �2 �3 �4 .
The set ∆ determines the set of positive roots Φ+. For any root α, we define

the coroot Hα ∈ h by λ(Hα) = 2〈λ, α〉/2〈α, α〉, where 〈 , 〉 is the Killing form.
The fundamental weights {̟i}4i=1 are defined as the dual basis to the simple

coroots. We denote the irreducible representation of f4 with the highest weight λ
by ̺λ.

3. Action of F4 on ÔP2
0

In this section we explicitly describe the group Spin(9,C) as a multiplicative
subgroup of End(O2)⊗ C and construct its representation on Herm(3,O). Using
this representation, we prove that F4 acts transitively on the hyperplane section

ÔP2
0. The scalar multiplication on the algebra End(O2)⊗C acts only on the first

part of the tensor product, i.e. w · (A⊗ z) = (wA)⊗ z for w, z ∈ C, A ∈ End(O2).

3.1 Realisation of Spin(9,C). First we need an auxiliary result concerning the
Clifford algebra Cℓ(O, N).

Lemma 3.1.1. The map µ : O → End(O2) given by

u 7−→
(

0 Lu

−Lū 0

)

can be uniquely extended to the isomorphism of complex associative algebras
Cℓ(O, N) ≃ End(O2).

Proof: Easy calculation and (1a) shows that µ(u)µ(u) = −N(u) Id. Using the
universal property of Clifford algebras and the fact that the algebra Cℓ(8,C) is
simple (see [9]), we immediately get the result. �
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Let V9 be the complex vector space C ⊕ O. We define the quadratic form N ′

by (r, u) 7→ r2 + N(u). Let κ : V9 → End(O2) ⊗ C be the homomorphism of
vector spaces given by

κ : (r, u) 7−→
(

r Lu

Lū −r

)
⊗ ı,

where ı denotes the imaginary unit in C.

Proposition 3.1.2. The Clifford algebra Cℓ(V9, N
′) is isomorphic (as an asso-

ciative algebra) to End(O2)⊗ C.

Proof: It is known (see e.g. [9]) that Cℓ(V9, N
′) ≃ M(16,C)⊕M(16,C). Calcu-

lation and (1a) shows that κ(r, u)κ(r, u) = −N ′(r, u) Id. The universal mapping
property of Clifford algebras gives us the following commutative diagram

V9

κ

''O

O

O

O

O

O

O

O

O

O

O

O

O

i
// M(16, C)⊕M(16,C)

f

��

End(O2)⊗ C .

Because κ(−1, 0)κ(0, u) = µ(u) ⊗ 1, we see that the image of f generates the
subalgebra End(O2)⊗ 1. The equality

(
A B
C D

)
⊗ ı =

(
1 0
0 −1

)
⊗ ı ·

(
A B
−C −D

)
⊗ 1

implies that the image of f generates the whole algebra End(O2) ⊗ C. Since
the dimensions of the considered algebras are the same, it follows that f is an
isomorphism. �

Lemma 3.1.3. The spin group Spin(V9, N
′) is generated (inside End(O2) ⊗ C)

by elements of the form

gr,u :=

(
r −Lu

Lū r

)
⊗ 1, r ∈ C, u ∈ O, r2 + uū = 1.

Proof: The spin group is by definition generated by products of the form
κ(r, u)κ(s, v), where N ′(r, u) = N ′(s, v) = 1. Since gr,u = κ(r, u)κ(−1, 0) and
κ(r, u)κ(s, v) = gr,ug−s,v, the lemma follows. �

For brevity we will identify A⊗ 1 ∈ End(O2)⊗C with A ∈ End(O2) from now
on; i.e.

gr,u =

(
r −Lu

Lū r

)
.
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3.2 Representations of Spin(V9, N
′). We will use the following decomposition

of Herm(3,O)


r1 x̄1 x̄2

x1 r2 x3

x2 x̄3 r3


 =



r1 0 0
0 0 0
0 0 0


+




0 x̄1 x̄2

x1 0 0
x2 0 0


+



0 0 0
0 s x3

0 x̄3 −s


+



0 0 0
0 t 0
0 0 t




in order to define the action of Spin(V9, N
′) on it. In other words — we take the

C-linear isomorphism Herm(3,O) → C ⊕ O2 ⊕ Herm0(2,O) ⊕ C and we endow
each of the spaces in the decomposition with an action of Spin(V9, N

′). The O2

summand will be the spinor part and we will call the Herm(2,O)0 summand the
vector part .

Lemma 3.2.1. Let Φ be the linear isomorphism between the space of trace-free
hermitian matrices Herm0(2,O) and κ(V9) defined by

Φ :

(
s x
x̄ −s

)
7→

(
s Lx

Lx̄ −s

)
⊗ ı

and let ̺V be the vector representation of Spin(V9, N
′).

If we define the representation of Spin(V9, N
′) on Herm0(2,O) by ξV (g)a :=

Φ−1(̺V (g)Φ(a)), the following formula holds for the generators gr,u of Spin(V9, N
′)

ξV (gr,u)

(
s x
x̄ −s

)
=

[(
r −u
ū r

)(
s x
x̄ −s

)](
r u
−ū r

)

=

(
s
(
r2 −N(u)

)
− r〈x, u〉 2rsu+ r2x− ux̄u

2rsū+ r2x̄− ūxū −s
(
r2 −N(u)

)
+ r〈x̄, ū〉

)
.(2)

Proof: The vector representation of Spin(V9, N
′) is given by v 7→ gvg−1 where

v is an element of κ(V9) and g ∈ Spin(V9, N
′). For gr,u = κ(r, u)κ(−1, 0) we get

g−1
r,u = gr,−u.

Thus we have the following formula for ρV (gr,u) evaluated on v =
(

s Lx

Lx̄ −s

)
⊗ ı

(
s
(
r2 −N(u)

)
− r(LuLx̄ + LxLū) 2rsLu + r2Lx − LuLx̄Lu

2rsLū + r2Lx̄ − LūLxLū −s
(
r2 −N(u)

)
+ r(LūLx + Lx̄Lu)

)
⊗ ı.

From (1b) we have LuLx̄ + LxLū = L〈x,u〉. With the help of the first Moufang
identity (1c) we may substitute LuLx̄Lu = L(ux̄)u. Applying the isomorphism Φ

to the result gives the expression for ξV (gr,u)Φ
−1(v) which agrees with (2). �

The spinor representation of Spin(V9, N
′) acts on O2 by (see Chapter 6 of [9]

for details)

ξS(gr,u)(x1, x2) =

(
r −Lu

Lū r

)(
x1

x2

)
=

(
rx1 − ux2

ūx1 + rx2

)
.

We let the Spin(V9, N
′) act on the rest of the summands of Herm(3,O) trivially

and denote the resulting action by ξ.
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Proposition 3.2.2. The representation ξ is faithful and preserves the Jordan
product. In other words Spin(V9, N

′) ≃ Im(ξ) is a subgroup of F4.

Proof: Since the spinor representation ξS is faithful, the representation ξ is
faithful as well. In order to prove that this action preserves the Jordan product
we introduce the following three by three hermitian matrix

Gr,u =



1 0 0
0 r −u
0 ū r


 ∈ Herm(3,O),

where (r, u) ∈ V9 is of unit norm. Straightforward calculations reveal that G−1
r,u =

Gr,−u and that Gr,uAG
−1
r,u gives the expression for the action of ξ(gr,u) on A.

Moreover the expression Gr,uAG
−1
r,u is unambiguous for any A ∈ Herm(3,O).

Put g = gr,u, G = Gr,u for simplicity. For each A ∈ Herm(3,O) we have

(ξ(g)A)(ξ(g)A) = (GAG−1)(GAG−1).

Let us suppose for a moment that (GAG−1)(GAG−1) = G(A(G−1G)A)G−1.
Then we would have

(ξ(g)A)(ξ(g)A) = ξ(g)(A2)(3)

for any A ∈ Herm(3,O). Using this equality for A+B instead of A we would get
on the left hand side

(ξ(g)(A+B)) (ξ(g)(A+B)) =
(
ξ(g)A+ ξ(g)B

)(
ξ(g)A+ ξ(g)B

)

= (ξ(g)A)2 + (ξ(g)A)(ξ(g)B)

+ (ξ(g)B)(ξ(g)A) + (ξ(g)B)2,

while the right hand side would equal

ξ(g)
(
(A+B)2

)
= ξ(g)(A2) + ξ(g)(AB) + ξ(g)(BA) + ξ(g)(B2).

Using (3) for ξ(g)(A2) and ξ(g)(B2) we would get that

(ξ(g)A)(ξ(g)B) + (ξ(g)B)(ξ(g)A) = ξ(g)(AB +BA).

So we only need to prove that we can rearrange the brackets in the expression
(GAG−1)(GAG−1). From the Artin’s theorem it follows that

(u1au2)(u3au4) = u1(a(u2u3)a)u4,

where ui are elements of the linear span of {r, u, ū} and a ∈ O is arbitrary. Using
the same trick as above and writing this equality for a+ b instead of a we get

(u1au2)(u3bu4) + (u1bu2)(u3au4) = u1(a(u2u3)b)u4 + u1(b(u2u3)a)u4.
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The equation

((GAG−1)(GAG−1))a,b

=
1

2

∑

i,j,...,m

(Ga,iAi,jG
−1
j,k)(Gk,lAl,mG−1

m,b) + (Ga,lAl,mG−1
m,k)(Gk,iAi,jG

−1
j,b )

and the fact that Gi,j are from the linear span of {r, u, ū} imply

(GAG−1)(GAG−1) = G(A(G−1G)A)G−1 = GA2G−1.

�

Remark 3.2.3. One could define the representation ξ directly using the matrix
Gr,u. It is however not clear that the expression Gr,uAG

−1
r,u defines a representa-

tion due to the nonassociativity of the product of Herm(3,O).

3.3 The subgroup Spin(8,C). The usual presentation of spin groups gives (see
Lemma 3.1.1) the following set of generators of Spin(O, N)

{(
−LuLv̄ 0

0 −LūLv

) ∣∣∣ u, v ∈ O, N(u) = N(v) = 1

}
.

One can obtain matrices of this form as products g0,ug0,v which means that these
generators are in fact elements of Spin(V9, N

′). The formula for the restriction
of ξV to the subgroup Spin(O, N)

(4) ξV

((
LuLv̄ 0
0 LūLv

))(
s x3

x̄3 −s

)
=

(
s u(v̄x3v̄)u

ū(vx̄3v)ū −s

)

is easily proved using (2).
Analogously, the action of Spin(O, N) on O2 is given by

(5) ξS

((
LuLv̄ 0
0 LūLv

))(
x1

x2

)
=

(
u(v̄x1)
ū(vx2)

)
,

which is the direct sum of two inequivalent spinor representations of Spin(O, N).
Please note that the quadratic form N is invariant with respect to all the three
inequivalent actions of Spin(O, N) on the vector space O.

3.4 Transitivity of the F4 action on ÔP2
0.

Lemma 3.4.1. Let

A =



−2t x̄1 x̄2

x1 t+ s x̄3

x2 x3 t− s




be an element of ÔP2
0. Then the vector part of A is isotropic (i.e. s2+N(x3) = 0)

if and only if N(x1) = N(x2) = 0 and if and only if t = 0.
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Proof: The statement is a straightforward consequence of the fact that diagonal
elements of A2 must equal zero. �

Theorem 3.4.2. The group F4 acts transitively on ÔP2
0. For every A ∈ ÔP2

0

there exists g ∈ F4 such that

(6) g ·A =



ı 1 0
1 −ı 0
0 0 0


 .

Proof: First we suppose that A ∈ ÔP2
0 has nonisotropic vector part. In such case

we can use Lemma 2.2.1 to prove that there exists an element h1 ∈ Spin(V9, N
′)

such that

ξ(h1)A =



r1 x̄1 x̄2

x1 r2 0
x2 0 r3


 , with r1, r2, r3 ∈ C, x1, x2 ∈ O.

Let us denote ξ(h1) =: g1 ∈ F4. The matrix (g1 ·A)2 has the form

(7)



r21 +N(x1) +N(x2) x̄1(r1 + r2) x̄2(r1 + r3)

x1(r1 + r2) r22 +N(x2) x1x̄2

x2(r1 + r3) x2x̄1 r23 +N(x2)


 .

This is a zero matrix, in particular N(x1)N(x2) = N(x1x̄2) = 0, so x1 and x2

cannot be both non-isotropic. On the other hand, they cannot be both isotropic
because of Lemma 3.4.1.

Assume first that N(x1) 6= 0 and N(x2) = 0. The action of Spin(O, N) pre-
serves the vector part

(
r2 0
0 r3

)
of g1 · A because of (4). Let

h2 := κ(0,−1)κ(0,
x1√
N(x1)

) ∈ Spin(O, N)

and ξ(h2) =: g2 ∈ F4. By (5), g2 sends the spinor part x1 ⊕x2 of g1 ·A to x′
1 ⊕x′

2

where x′
1 =

√
N(x1) ∈ C and x′

2 = 1√
N(x1)

x1x2. The matrix (g2g1 · A)2 has

the same form as (7) with x1 and x2 substituted by x′
1 and x′

2. It is still a zero
matrix and its (2, 3)-position 0 = x′

1x̄
′
2 implies x′

2 = 0 (x′
1 is a nonzero complex

number). The other positions of this matrix imply 0 = r23 + N(x′
2), so r3 = 0,

and r21 +N(x′
1) = r21 + (x′

1)
2 = 0, so

g2g1 · A =



±ıw w 0
w ∓ıw 0
0 0 0




for some 0 6= w ∈ C.
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The case N(x1) = 0, N(x2) 6= 0 leads in a similar way to a matrix of the

form
(±ıw 0 w

0 0 0
w 0 ∓ıw

)
, 0 6= w ∈ C, which can be transformed by the orthogonal

matrix
(

1 0 0
0 0 1
0 1 0

)
to the previous one. One can get rid of the sign ambiguity with

(
0 1 0
1 0 0
0 0 1

)
and the matrix

(
ıw w 0
w −ıw 0
0 0 0

)
can be transformed to the canonical form (6)

by conjugating by the orthogonal matrix




1√
w

0 −ı
√
1−w√
w

−ı(1−w)√
w

√
w −

√
1−w√
w

ı
√
1− w

√
1− w 1


 .

So, g3g2g1 ·A has the canonical form (6), where g3 is some element in the image
of the embedding O(3,C) →֒ F4 defined in Section 2.3.

If A has isotropic but nonzero vector part, then the preceding lemma implies
that the topleft element of A is 0. Using Lemma 2.2.1 we can find an element g′ ∈
ξ(Spin(V9, N

′)) ≤ F4 such that g′ · A =
(

0 x̄1 x̄2
x1 ıw w
x2 w −ıw

)
where w 6= 0. Conjugation

by
(

0 1 0
1 0 0
0 0 1

)
leads to a matrix whose top left element is ıw 6= 0. By the previous

lemma, such a matrix has nonisotropic vector part and we have reduced this case
to the already solved one.

Finally, suppose that A has zero vector part, A =
( 0 x̄1 x̄2

x1 0 0
x2 0 0

)
. This matrix is

nonzero by definition. If x2 6= 0, then the action of
(

0 1 0
1 0 0
0 0 1

)
transforms it to a

matrix with nonzero vector part. The case x1 6= 0 is treated similarly. �

Remark 3.4.3. We see from the proof that in order to prove transitivity of F4

on OP2
0, it is sufficient to consider only discrete subgroup of O(3,C) isomorphic to

S3 — a permutation group on three letters. This is a manifestation of the triality
principle.

Now we prove that the cone ÔP2
0 over OP2

0 is a smooth manifold.

Proposition 3.4.4. The space ÔP2
0 is a smooth manifold of dimension 32.

Proof: Let as define the smooth map f : Herm(3,O)0 → Herm(3,O)0 by

f(A) := A2. We use the implicit function theorem to show that ÔP2
0 = f−1(0)\{0}

is a smooth manifold. The differential of f at A is easily proved to be B 7→ 2A◦B.

We already know that F4 acts transitively on f−1(0) \ {0} = ÔP2
0 and so we have

dimker(B 7→ A◦B) = dimker
(
B 7→ g ·(A◦(g−1 ·B))

)
= dimker

(
B 7→ (g ·A)◦B

)

for any g ∈ F4. So, the differential df of f has constant rank on the set f−1(0)\{0}
and ÔP2

0 is a smooth manifold.
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The kernel of the differential of f at the canonical point (6) equals







ıℜ(x1) x1 x2

x̄1 −ıℜ(x1) −ıx2

x̄2 −ıx̄2 2ℜ(x1)



∣∣∣∣∣∣
x1, x2 ∈ O





and is isomorphic to the tangent space of ÔP2
0 at that point. �

3.5 The real case. By choosing an appropriate involution on J3(OC) we get

a model for F
(−20)
4 /P4 — i.e. the conformal infinity of the Einstein space OH2.

According to Yokota [23] the following real subalgebra of J3(OC)



A ∈ J3(OC) : I1A

T
I1 = A, I1 =



−1 0 0
0 1 0
0 0 1







=








r1 x1 x2

−x1 r2 x3

−x2 x3 r3


 : xi ∈ OR, ri ∈ R





has F
(−20)
4 as its automorphism group. By restricting the map κ to R ⊕ OR we

get presentation of Spin(9,R) and the restriction of our representation ξ maps

Spin(9,R) into F
(−20)
4 . Instead of O(3,C) we have the compact orthogonal group

O(3,R).
The model of F

(−20)
4 /P4 is given by the same equations as in the complex case.

Since there are no isotropic elements in the vector part, the proof of transitivity is
now much simpler. By transitivity of SO(9,R) on spheres we can map any element

of our model to a matrix of the form
( −2t x1 x2

−x1 t+s 0
−x2 0 t−s

)
. The square of this matrix

has to be zero by definition which for diagonal elements gives three equations that
yield easily t2 − s2 = 0. The case t = −s leads to x1 = 0 and can be reduced to

the case of t = s by conjugation with
(

1 0 0
0 0 1
0 1 0

)
.

The case t = s gives x2 = 0 and we can easily find an action of Spin(8,R) that
maps x1 to a positive real number which gives us a matrix in the form

( −r x 0
−x r 0
0 0 0

)
,

where all the entries are real and r2 = x2. We can reduce the case r = −x to the

case r = x by conjugation with
(

0 1 0
1 0 0
0 0 1

)
. Thus we can map an arbitrary element

A from our real Jordan algebra, such that TrA = 0 and A2 = 0, to a matrix of

the form
(−x x 0

−x x 0
0 0 0

)
where x is a positive real number. This shows that F

(−20)
4 has

transitive action on the real projectivization of the appropriate set.
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4. Description of the stabilizer of the F4 action

In this section we will identify the stabilizer of OP2
0 as a concrete parabolic

subgroup of F4.

Lemma 4.0.1. There exists up to isomorphism only one irreducible representa-
tion ̺ of the group F4 such that

1 < dimC ̺ ≤ 26.

The highest weight of this representation is ̟4 = ǫ1.

Proof: Let λ, µ ∈ h∗ be two integral dominant weights, µ 6= 0. By a direct
application of the Weyl dimensional formula (see Goodman, Wallach [9]), we
obtain that dim ̺λ+µ > dim ̺λ. Using the program LiE [20], we get dim ρ̟1 = 52,
dim ̺̟2 = 1274, dim ̺̟3 = 273 and dim ̺̟4 = 26. By the previous inequality,
we see that there is only one irreducible 26-dimensional representations of the Lie
algebra f4. �

Since dimJ0 = 26 and all finite dimensional representation of the simple Lie
group F4 are completely reducible, we obtain immediately the following.

Proposition 4.0.2. The restriction to the defining representation of F4 on J0 =
Herm(3,O)0 is isomorphic to the 26-dimensional irreducible representation ̺ǫ1 .

It is clear from definition that OP2
0 is a projective variety. According to

Humphreys [12] this implies that the stabilizer group of any point is a para-
bolic subgroup of F4. Since any parabolic subgroup contains Borel subgroup, it
follows that the points of the variety are lines spanned by highest weight vectors.

For a fixed choice of the Cartan subalgebra h and simple roots ∆ there is a
1− 1 correspondence between isomorphism classes of parabolic subalgebras p ⊆ g
and subsets Σ ⊆ ∆ of the set ∆ of simple roots described e.g. in [6, Chapter 3].
We will denote the parabolic subalgebra corresponding to Σ = {αi} by pi.

Because the highest weight of J0 is ǫ1, the following theorem follows directly
from [6, Theorem 3.2.5]. Its proof is not difficult — it is based on the fact that for
each X ∈ gα one can find Y ∈ g−α such that [Y,X ] = Hα, where Hα(λ) = 〈λ, α〉
and the fact that the set of weights is invariant under the action of Weyl group.

Theorem 4.0.3. Let P be the stabilizer of a point p ∈ OP2
0 with respect to the

action of the group F4. Then the Lie algebra p of the group P is isomorphic to p4.

Remark 4.0.4. We see that ÔP2
0 is the F4-orbit of the highest weight vector

in J0. Points in ÔP2
0 are exactly all possible highest weight vectors for this

representation, corresponding to different choices of h and Φ+. The real case can
be treated in similar manner with analogous results. See [6] for details.

Remark 4.0.5. From the computation of the harmonic curvature (as done for
example in [17], also see [6]) one can prove that the homogeneous space does
not admit curved deformations in the sense of regular normal Cartan geometries.
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However, if one relaxes the regularity condition there are some deformations of
this structure [1].
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