Previous |  Up |  Next

Article

Keywords:
leader-follower multi-agent system; event-triggered control; time-varying delay; directed topology
Summary:
As embedded microprocessors are applied widerly to multi-agent systems, control scheduling and time-delay problems arose in the case of limited energy and computational ability. It has been shown that the event-triggered actuation strategy is an effective methodology for designing distributed control of multi-agent systems with limited computational resources. In this paper, a tracking control problem of leader-follower multi-agent systems with/without communication delays is formulated and a distributed dynamic tracking control is designed by employing event-triggered technique. Then, the input-to-state stability of the closed-loop multi-agent system with directed interconnections is analyzed. Finally, a numerical example is given to validate the proposed control.
References:
[1] Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments. IEEE Trans. Control Systems Technol. 19 (2011), 929–938. DOI 10.1109/TCST.2010.2053542
[2] Dimarogonas, D. V., Frazzoli, E.: Distributed event-triggered strategies for multi-agent systems. In: Proc. 47th Annual Allerton Conference on Communications, Control and Computing, Monticello 2009, pp. 906–910.
[3] Dimarogonas, D. V., Johansson, K. H.: Event-triggered control for multi-agent systems. In: Proc. IEEE CDC/CCC2009, Shanghai 2009, pp. 7131–7136.
[4] Eqtami, A., Dimarogonas, D. V., Kyriakopoulos, K. J.: Event-triggered control for discrete-time systems. In: Proc. American Control Conference, Baltimore 2010, pp. 4719–4724.
[5] Gao, Y., Wang, L.: Asynchronous consensus of continuous-time multi-agent systems with intermittent measurements. Internat. J. Control 83 (2010), 552–562. DOI 10.1080/00207170903297192 | MR 2642904 | Zbl 1222.93009
[6] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. MR 1829620 | Zbl 0968.05002
[7] Hale, J. K., Lunel, S. M. V.: Introduction to the Theory of Functional Differential Equations. Applied Mathematical Sciences, Springer, New York 1991.
[8] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177–1182. DOI 10.1016/j.automatica.2006.02.013 | MR 2230987 | Zbl 1117.93300
[9] Hu, J.: On robust consensus of multi-agent systems with communication time-delays. Kybernetika 45 (2009), 768–784. MR 2599111
[10] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382–1387. DOI 10.1016/j.automatica.2010.05.020 | MR 2877254 | Zbl 1204.93011
[11] Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A 374 (2007), 853–863. DOI 10.1016/j.physa.2006.08.015
[12] Kingston, D. B., Ren, W., Beard, R.: Consensus algorithms are inputto-state stable. In: Proc. American Control Conference 2005, pp. 1686–1690.
[13] Li, T., Zhang, J.: Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica 45 (2009), 1929–1936. DOI 10.1016/j.automatica.2009.04.017 | MR 2879518 | Zbl 1185.93006
[14] Liu, Z., Chen, Z.: Event-triggered average-consensus for multi-agent systems. In: Proc. 29th Chinese Control Conference, Beijing 2010, pp. 4506–4511.
[15] Liu, Y., Jia, Y.: Consensus problem of high-order multi-agent systems with external disturbances: an H-infinity analysis approach. Internat. J. Robust Nonlinear Control 20 (2010), 1579–1593. DOI 10.1002/rnc.1531 | MR 2724254
[16] Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control 50 (2005), 169–182. DOI 10.1109/TAC.2004.841888 | MR 2116423
[17] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520–1533. DOI 10.1109/TAC.2004.834113 | MR 2086916
[18] Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45 (2009), 1165–1175. DOI 10.1016/j.automatica.2008.12.015 | MR 2531590 | Zbl 1162.93308
[19] Sontag, E. D.: Input to state stability: basic concepts and results. In: Proc. CIME Summer Course on Nonlinear and Optimal Control Theory 2004, pp. 462–488.
[20] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52 (2007), 1680–1685. DOI 10.1109/TAC.2007.904277 | MR 2352444
[21] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891–2895. DOI 10.1109/TAC.2010.2076250 | MR 2767160
[22] Wang, X., Lemmon, M. D.: Event-triggering in distributed networked control systems. IEEE Trans. Automat. Control 56 (2011), 586–601. DOI 10.1109/TAC.2010.2057951 | MR 2799075
Partner of
EuDML logo