Previous |  Up |  Next

Article

Keywords:
control theory; Lyapunov methods; internal model principle; modified FitzHugh--Nagumo model; Van der Pol circuit
Summary:
This paper treats the question of robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. We first present the solution of the global robust output regulation problem for output feedback system with nonlinear exosystem. Then we show that the robust control problem for the modified FitzHugh-Nagumo neuron model can be formulated as the global robust output regulation problem and the solvability conditions for the output regulation problem for the modified FitzHugh-Nagumo neuron model are all satisfied. Then we apply the obtained output regulation results to the control problem for modified FitzHugh-Nagumo neuron model. Finally, an output feedback control law is designed for the modified FitzHugh-Nagumo neuron model to achieve global stability of the closed-loop system in the presence of uncertain parameters and external stimulus. An example is shown that the proposed algorithm can completely reject the external electrical stimulation generated from a Van der Pol circuit.
References:
[1] Arcak, M., Kokotovic, P.: Nonlinear observers: A circle criteria design and robustness analysis. Automatica 37 (2001), 1923–1930. DOI 10.1016/S0005-1098(01)00160-1 | MR 2110678
[2] Byrnes, C. I., Priscoli, F. D., Isidori, A.: Structurally stable output regulation of nonlinear systems. Automatica 33 (1997), 369–385. DOI 10.1016/S0005-1098(96)00184-7 | MR 1442555 | Zbl 0873.93043
[3] Chen, C., Ding, Z., Lennox, B.: Rejection of nonharmonic disturbances in nonlinear systems with semi-global stability. IEEE Trans. Circuits. Syst. II: Expr. Briefs 55 (2008), 1289–1293. DOI 10.1109/TCSII.2008.2009962
[4] Chen, Z., Huang, J.: Global robust output regulation for output feedback systems. IEEE Trans. Automat. Control 50 (2005), 117–121. DOI 10.1109/TAC.2004.841125 | MR 2110818
[5] Chen, Z., Huang, J.: Robust output regulation with nonlinear exosystems. Automatica 41 (2005), 1447–1454. DOI 10.1016/j.automatica.2005.03.015 | MR 2160490 | Zbl 1086.93013
[6] Davison, E. J.: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 25–34. DOI 10.1109/TAC.1976.1101137 | MR 0406616 | Zbl 0326.93007
[7] Desoer, C. A., Lin, C. A.: Tracking and disturbance rejection of MIMO nonlinear systems with PI controller. IEEE Trans. Automat. Control 30 (1985), 861–867. DOI 10.1109/TAC.1985.1104078 | MR 0799479 | Zbl 0573.93027
[8] Benedetto, M. D. Di: Synthesis of an internal model for nonlinear output regulation. Internat. J. Control 45 (1987), 1023–1034. DOI 10.1080/00207178708933784 | MR 0880281
[9] Che, Y. Q., Wang, J., Zhou, S. S., Deng, B.: Robust synchronization control of coupled chaotic neurons under external electrical stimulation. Chaos Solit. Fract. 40 (2009), 1333–1342. MR 2526117 | Zbl 1197.37110
[10] Ding, Z.: Global output regulation of uncertain nonlinear systems with exogenous signals. Automatica 37 (2001), 113–119. DOI 10.1016/S0005-1098(00)00129-1 | MR 1832885 | Zbl 0964.93057
[11] Ding, Z.: Output regulation of uncertain nonlinear systems with nonlinear exosystems. IEEE Trans. Automat. Control 51 (2006), 498–503. DOI 10.1109/TAC.2005.864199 | MR 2205690
[12] Ding, Z.: Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika. 45 (2009), 33–48. MR 2489579 | Zbl 1158.93303
[13] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131–140. DOI 10.1109/9.45168 | MR 1038409 | Zbl 0704.93034
[14] Francis, D. A., Wonham, W. M.: The internal model principle for linear multivariable regulators. Appl. Math. Optim. 2 (1975), 170–194. DOI 10.1007/BF01447855 | MR 0389331 | Zbl 0351.93015
[15] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem. IEEE Trans. Automat. Control 49 (2004), 2203–2218. DOI 10.1109/TAC.2004.839236 | MR 2106750
[16] Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology. Ann. Rev. Genom, Hum. Genet. 2 (2001), 343–372. DOI 10.1146/annurev.genom.2.1.343
[17] Gong, Q., Lin, W.: A note on global output regulation of nonlinear system in the output feedback form. IEEE Trans. Automat. Control 48 (2003), 1049–1054. DOI 10.1109/TAC.2003.812804 | MR 1986277
[18] Huang, J.: Asymptotic tracking and disturbance rejection in uncertain nonlinear systems. IEEE Trans. Automat. Control 40 (1995), 1118–1122. DOI 10.1109/9.388697 | MR 1345975 | Zbl 0829.93027
[19] Huang, J., Lin, C-F.: On a robust nonlinear servomechanism problem. IEEE Trans. Automat. Control. 39 (1994), 1510–1513. DOI 10.1109/9.299646 | MR 1283933 | Zbl 0800.93290
[20] Huang, J., Rugh, W. J.: On a nonlinear multivariable servomechanism problem. Automatica 26 (1990), 963–972. DOI 10.1016/0005-1098(90)90081-R | MR 1080983 | Zbl 0717.93019
[21] Isidori, A.: Nonlinear Control Systems. 3rd eddition. Springer-Verlag, New York 1995. MR 1410988 | Zbl 0878.93001
[22] Johnson, C. D.: Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Automat. Control. 16 (1971), 635–644. DOI 10.1109/TAC.1971.1099830
[23] Kitano, H.: Systems biology: A brief overview. Science 295 (2002), 1662–1664. DOI 10.1126/science.1069492
[24] Kürten, K. E., Clark, J. W.: Chaos in neural systems. Phys. Lett. A, 114 (1986), 413–418. DOI 10.1016/0375-9601(86)90729-2 | MR 0829167
[25] Lin, W., Qian, C.: Adaptive control of nonlinearly parameterized systems: the smooth case. IEEE Trans. Automat. Control. 47 (2002), 1249–1266. DOI 10.1109/TAC.2002.800773 | MR 1917435
[26] Liu, S., Jiang, Y., Liu, P.: Rejection of nonharmonic disturbances in nonlinear systems. Kybernetika 46 (2010), 758–798. MR 2778927 | Zbl 1205.93158
[27] Marino, R., Tomei, P.: Nonlinear Control Design-Nonlinear, Robust and Adaptive. Prentice Hall, Englewood Cliffs, New York 1994.
[28] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Nonlinear Dynamical Analysis on Coupled Modified FitzHugh–Nagumo Neuron Model. Lecture Notes in Computer Science. Springer Berlin – Heidelberg. 3496 (2005), 95–101. Zbl 1082.68677
[29] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Controlling synchronization of modified FitzHugh–Nagumo neurons under external electrical stimulation. NeuroQuantology 1 (2006), 50–67.
[30] Ramos, L. E., C̆elikovský, S., Kuc̆era, V.: Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737–1742. DOI 10.1109/TAC.2004.835404 | MR 2091325
[31] Rinzel, J.: A formal classification of bursting mechanisms in excitable systems, in mathematical topics in population niology, morphogenesis and neurosciences. Lecture Notes in Biomath., Springer–Verlag, New York. 71 (1987), 267–281. MR 0913344
[32] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427–444. MR 2543132 | Zbl 1165.93320
[33] Serrani, A., Isidori, A.: Global robust output regulation for a class of nonlinear systems. Syst. Control Lett. 39 (2000), 133–139. DOI 10.1016/S0167-6911(99)00099-7 | MR 1826676 | Zbl 0948.93027
[34] Sun, W., Huang, J.: Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application. Science in China, Ser. F: Information Sciences 52 (2009), 2172–2179. MR 2566641 | Zbl 1182.93072
[35] Venkatesh, K. V., Bhartiya, S., Ruhela, A.: Mulitple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli. FEBS Lett. 563, (2004), 234–240. DOI 10.1016/S0014-5793(04)00310-2
[36] Wang, J., Zhang, T., Deng, B.: Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos Solit. Fract. 31 (2007), 30–38. MR 2263262 | Zbl 1133.92008
[37] Xi, Z., Ding, Z.: Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43 (2007), 143–149. DOI 10.1016/j.automatica.2006.08.011 | MR 2266780 | Zbl 1140.93462
[38] Xi, Z., Ding, Z.: Global decentralised output regulation for a class of large-scale nonlinear systems with nonlinear exosystem. IET Control. Theory Appl. 1 (2007), 1504–1511. DOI 10.1049/iet-cta:20060432 | MR 2350838
Partner of
EuDML logo