[3] Chen, C., Ding, Z., Lennox, B.:
Rejection of nonharmonic disturbances in nonlinear systems with semi-global stability. IEEE Trans. Circuits. Syst. II: Expr. Briefs 55 (2008), 1289–1293.
DOI 10.1109/TCSII.2008.2009962
[9] Che, Y. Q., Wang, J., Zhou, S. S., Deng, B.:
Robust synchronization control of coupled chaotic neurons under external electrical stimulation. Chaos Solit. Fract. 40 (2009), 1333–1342.
MR 2526117 |
Zbl 1197.37110
[12] Ding, Z.:
Decentralized output regulation of large scale nonlinear systems with delay. Kybernetika. 45 (2009), 33–48.
MR 2489579 |
Zbl 1158.93303
[16] Ideker, T., Galitski, T., Hood, L.:
A new approach to decoding life: Systems biology. Ann. Rev. Genom, Hum. Genet. 2 (2001), 343–372.
DOI 10.1146/annurev.genom.2.1.343
[17] Gong, Q., Lin, W.:
A note on global output regulation of nonlinear system in the output feedback form. IEEE Trans. Automat. Control 48 (2003), 1049–1054.
DOI 10.1109/TAC.2003.812804 |
MR 1986277
[22] Johnson, C. D.:
Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Automat. Control. 16 (1971), 635–644.
DOI 10.1109/TAC.1971.1099830
[25] Lin, W., Qian, C.:
Adaptive control of nonlinearly parameterized systems: the smooth case. IEEE Trans. Automat. Control. 47 (2002), 1249–1266.
DOI 10.1109/TAC.2002.800773 |
MR 1917435
[26] Liu, S., Jiang, Y., Liu, P.:
Rejection of nonharmonic disturbances in nonlinear systems. Kybernetika 46 (2010), 758–798.
MR 2778927 |
Zbl 1205.93158
[27] Marino, R., Tomei, P.: Nonlinear Control Design-Nonlinear, Robust and Adaptive. Prentice Hall, Englewood Cliffs, New York 1994.
[28] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.:
Nonlinear Dynamical Analysis on Coupled Modified FitzHugh–Nagumo Neuron Model. Lecture Notes in Computer Science. Springer Berlin – Heidelberg. 3496 (2005), 95–101.
Zbl 1082.68677
[29] Mishra, D., Yadav, A., Ray, S., Kalra, P. K.: Controlling synchronization of modified FitzHugh–Nagumo neurons under external electrical stimulation. NeuroQuantology 1 (2006), 50–67.
[30] Ramos, L. E., C̆elikovský, S., Kuc̆era, V.:
Generalized output regulation problem for a class of nonlinear systems with nonautonomous exosystem. IEEE Trans. Automat. Control 49 (2004), 1737–1742.
DOI 10.1109/TAC.2004.835404 |
MR 2091325
[31] Rinzel, J.:
A formal classification of bursting mechanisms in excitable systems, in mathematical topics in population niology, morphogenesis and neurosciences. Lecture Notes in Biomath., Springer–Verlag, New York. 71 (1987), 267–281.
MR 0913344
[32] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.:
A comparison of two fem-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427–444.
MR 2543132 |
Zbl 1165.93320
[34] Sun, W., Huang, J.:
Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application. Science in China, Ser. F: Information Sciences 52 (2009), 2172–2179.
MR 2566641 |
Zbl 1182.93072
[35] Venkatesh, K. V., Bhartiya, S., Ruhela, A.:
Mulitple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli. FEBS Lett. 563, (2004), 234–240.
DOI 10.1016/S0014-5793(04)00310-2
[36] Wang, J., Zhang, T., Deng, B.:
Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos Solit. Fract. 31 (2007), 30–38.
MR 2263262 |
Zbl 1133.92008
[38] Xi, Z., Ding, Z.:
Global decentralised output regulation for a class of large-scale nonlinear systems with nonlinear exosystem. IET Control. Theory Appl. 1 (2007), 1504–1511.
DOI 10.1049/iet-cta:20060432 |
MR 2350838