[4] Gaitsgory, V.:
On a pepresentation of the limit occupational measures set of a control system with applications to singularly perturbed control systems. SIAM J. Control Optim. 43(1) (2004), 325–340.
DOI 10.1137/S0363012903424186 |
MR 2082704
[7] Gopal, M.: Modern Control System Theory. New Age International, New Delhi 1993.
[9] Chang, K. W., Howes, F. A.:
Nonlinear Singular Perturbation Phenomena: Theory and Applications. Springer-Verlag, New York 1984.
MR 0764395 |
Zbl 0559.34013
[10] Khan, A., Khan, I., Aziz, T., Stojanovic, M.:
A variable-mesh approximation method for singularly perturbed boundary-value problems using cubic spline in tension. Internat. J. Comput. Math. 81 (2004), 12, 1513–1518.
DOI 10.1080/00207160412331284169 |
MR 2169101 |
Zbl 1064.65066
[12] Kokotovic, P., Khali, H. K., O’Reilly, J.:
Singular Perturbation Methods in Control, Analysis and Design. Academic Press, London 1986.
MR 0937051
[14] Vrabel, R.:
Three point boundary value problem for singularly perturbed semilinear differential equations. E. J. Qualitative Theory of Diff. Equ. 70 (2009), 1–4.
MR 2577505 |
Zbl 1195.34030