[1] Berry, J. C.:
Minimax estimation of a restricted exponential location parameter. Statist. Decision 11 (1993), 307–316.
MR 1261841 |
Zbl 0792.62006
[3] Brown, L.:
Inadmissibility of the usual estimators of scale parameters in problems with uknown location and scale parameters. Ann. Math. Statist. 29(1) (1968), 29–48.
DOI 10.1214/aoms/1177698503 |
MR 0222992
[4] Ferguson, T. S.:
Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York 1967.
MR 0215390 |
Zbl 0153.47602
[6] Jozani, M. Jafari, Nematollahi, N., Shafie, K.:
An admissible minimax estimator of a bounded scale-parameter in a subclass of the exponential family under scale-invariant squared-error loss. Statist. Prob. Letter 60 (2002), 434–444.
MR 1947183
[8] Lehmann, E. L., Casella, G.:
Theory of Point Estimation. Second edition. Springer-Verlag, John Wiley, New York 1998.
MR 1639875 |
Zbl 0916.62017
[9] Moors, J. J. A.: Estimation in Truncated Parameter Spaces. Ph.D Thesis, Tilburg University Tilburg, The Netherlands 1985.
[12] Pitman, E. J. J.: The estimation of location and scale parameters of a continuous population of any given form. Biometrika 30 (1938), 391–421.
[13] Pitman, E. J. J.:
Some Basic Theory for Statistical Inference. Chapman Hall, London 1979.
MR 0549771 |
Zbl 0442.62002
[14] Rahman, M. S., Gupta, R. P.:
Family of transformed chi-square distributions. Comm. Statist. Theory Methods 22 (1993), 135–146.
MR 1209502
[15] Robertson, T., Wright, F. T., Dijkstra, R. L.:
Order Restricted Statistical Inference. John Wiley, New York 1988.
MR 0961262
[16] Farsipour, N. Sanjari, Zakerzadeh, H.:
Estimation of a gamma scale parameter under asymmetric squared-log error loss. Comm. Statist. Theory Methods 34 (2005), 1–9.
MR 2189422
[19] Eeden, C. van:
Minimax estimation of am lower-bounded scale parameter of a gamma distribution for scale invariant squared-error loss. Canada. J. Statist. 23 (1995), 245–256.
DOI 10.2307/3315365 |
MR 1363590
[20] Eeden, C. van:
Minimax estimation of a lower-bounded scale-parameter of an F-distribution. Statist. Prob. Lett. 46 (2000), 283–286.
DOI 10.1016/S0167-7152(99)00114-5
[21] Eeden, C. van, Zidek, J. V.:
Group-Bayes estimation of the exponential mean: A retrospective view of the wald theory. In: Statistical Decision Theory and Related Topics, V (S. S. Gupta and J. Berger, eds.), Springer, Berlin 1994, pp. 35–49.
MR 1286293
[22] Eeden, C. van, Zidek, J. V.:
Group-Bayes estimation of the exponential mean: A preposterior analysis. Test 3 (1994), 125–143.
DOI 10.1007/BF02562677 |
MR 1293111
[23] Eeden, C. van, Zidek, J. V.:
Correction to Group-Bayes estimation of the exponential mean: A preposterior analysis. Test 3 (1994), 247.
DOI 10.1007/BF02562705 |
MR 1293111