[2] Böhm, J., Kárný, M.: Transformation of user’s knowledge into initial values for identification. In: Preprints DYCOMANS Workshop Industrial Control and Management Methods: Theory and Practice (M. Součková and J. Böhm, eds.), ÚTIA AV ČR, Prague 1995, pp. 17–24.
[3] Chen, W., Jovanis, P.: Method for identifying factors contributing to driver-injury severity in traffic crashes. Highway And Traffic Safety: Crash Data, Analysis Tools, And Statistical Methods 1717 (2000), 1–9.
[4] Chinnaswamy, G., Chirwa, E., Nammi, S., Nowpada, S., Chen, T., Mao, M.:
Benchmarking and accident characteristics of flat-fronted commercial vehicles with respect to pedestrian safety. Internat. J. Crashworthiness 12 (2007), 279–291.
DOI 10.1080/13588260701441365
[5] Dempster, A. P., Laird, N., Rubin, D.:
Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B (Methodological) 39 (1977), 1, 1–38.
MR 0501537 |
Zbl 0364.62022
[7] Haykin, S.:
Neural Networks: A Comprehensive Foundation. MacMillan, New York 1994.
Zbl 0828.68103
[8] Wang, Jianyong, Zhang, Yuzhou, Zhou, Lizhu, Karypis, G. , Aggarwal, Charu C.:
Contour: An efficient algorithm for discovering discriminating subsequences. In: Data Mining and Knowledge Discovery, Springer 18 (2009), 1, pp. 1–29.
MR 2469590
[9] Kárný, M.: Tools for computer-aided design of adaptive controllers. IEE Control Theory Appl. 150 (2003), 6, 643.
[10] Kárný, M., Böhm, J., Guy, T. V., Jirsa, L., Nagy, I., Nedoma, P., Tesař, L.: Optimized Bayesian Dynamic Advising: Theory and Algorithms. Springer, London 2005.
[11] Kárný, M., Kadlec, J., Sutanto, E. L.: Quasi-Bayes estimation applied to normal mixture. in In: Preprints 3rd European IEEE Workshop on Computer-Intensive Methods in Control and Data Processing (J. Rojíček, M. Valečková, M. Kárný, and K. Warwick, eds.), ÚTIA AV ČR, Prague 1998, pp. 77–82.
[12] Kárný, M., Nagy, I., Novovičová, J.:
Mixed-data multi-modelling for fault detection and isolation. Internat. J. Adaptive Control Signal Process. 16 (2002), 1, 61–83.
DOI 10.1002/acs.672 |
Zbl 0998.93016
[13] Kerridge, D. F.:
Inaccuracy and Inference. J. Royal Statist. Soc. Ser. B (Methodological) 23 (1961), 1, 184–194.
MR 0123375 |
Zbl 0112.10302
[14] Kulhavý, R.:
A Bayes-closed approximation of recursive non-linear estimation. Internat. J. Adaptive Control Signal Process. 4 (1990), 271–285.
DOI 10.1002/acs.4480040404
[15] Ljung, L.:
System Identification: Theory for the User. Prentice-Hall, London 1987.
Zbl 0615.93004
[16] Murray-Smith, R., Johansen, T.:
Multiple Model Approaches to Modelling and Control. Taylor &Francis, London 1997.
MR 1694153
[17] Oppenheim, A., Wilsky, A.: Signals and Systems. Englewood Clifts, Jersey 1983.
[18] Opper, M., Saad, D.:
Advanced Mean Field Methods: Theory and Practice. The MIT Press, Cambridge 2001.
MR 1863214 |
Zbl 0994.68172
[19] Qu, H. B., Hu, B. G.:
Variational learning for Generalized Associative Functional Networks in modeling dynamic process of plant growth. Ecological Informatics 4 (2009), 3, 163–176.
DOI 10.1016/j.ecoinf.2009.06.004
[21] Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. In: Data Mining and Knowledge Discovery, Springer, 2 (1998), 2, pp. 169–194.
[22] Titterington, D., Smith, A., Makov, U.:
Statistical Analysis of Finite Mixtures. John Wiley, New York 1985.
MR 0838090
[23] Xu, Xiaowei, Jäger, J., Kriegel, H.-P.: A fast parallel clustering algorithm for large spatial databases. In: Data Mining and Knowledge Discovery, Springer, 3 (1999), 3, pp. 263–290.
[24] Zhang, T., Ramakrishnan, R., Livny, M.: Birch: A new data clustering algorithm and its applications. In: Data Mining and Knowledge Discovery, Springer, 1 (1997), 2, pp. 141–182.