Previous |  Up |  Next

Article

Keywords:
Lüroth series; Cantor set; Hausdorff dimension
Summary:
It is well known that every $x\in (0,1]$ can be expanded to an infinite Lüroth series in the form of $$x=\frac {1}{d_1(x)}+\cdots +\frac {1}{d_1(x)(d_1(x)-1)\cdots d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}+\cdots , $$ where $d_n(x)\geq 2$ for all $n\geq 1$. In this paper, sets of points with some restrictions on the digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the Cantor sets $$ F_{\phi }=\{x\in (0,1]\colon d_n(x)\geq \phi (n), \ \forall n\geq 1\} $$are completely determined, where $\phi $ is an integer-valued function defined on $\mathbb N$, and $\phi (n)\to \infty $ as $n\to \infty $.
References:
[1] Barreiraa, L., Iommi, G.: Frequency of digits in the Lüroth expansion. J. Number Theory. 129 (2009), 1479-1490. DOI 10.1016/j.jnt.2008.06.002 | MR 2521488
[2] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Carus Mathematical Monographs, 29. Washington DC, Mathematical Association of America (2002). MR 1917322 | Zbl 1033.11040
[3] Dajani, K., Kraaikamp, C.: On approximation by Lüroth series. J. Théor. Nombres Bordx. 8 (1996), 331-346. DOI 10.5802/jtnb.172 | MR 1438473 | Zbl 0870.11039
[4] Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Application. John Wiley & Sons (1990). MR 1102677
[5] Falconer, K. J.: Techniques in Fractal Geometry. John Wiley & Sons (1997). MR 1449135 | Zbl 0869.28003
[6] Fan, A. H., Liao, L. M., Ma, J. H., Wang, B. W.: Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity. 23 (2010), 1185-1197. DOI 10.1088/0951-7715/23/5/009 | MR 2630097
[7] Galambos, J.: Reprentations of Real Numbers by Infinite Series. Lecture Notes in Mathematics 502, Berlin-Heidelberg-New York, Springer-Verlag (1976). MR 0568141
[8] Good, I. J.: The fractional dimensional theory of continued fractions. Proc. Camb. Philos. Soc. 37 (1941), 199-228. DOI 10.1017/S030500410002171X | MR 0004878 | Zbl 0061.09408
[9] Jager, H., Vroedt, C. De: Lüroth series and their ergodic properties. Nederl. Akad. Wet., Proc. Ser. A72 (1969), 31-42. MR 0238793 | Zbl 0167.32201
[10] L'uczak, T.: On the fractional dimension of sets of continued fractions. Mathematika 44 (1997), 50-53. DOI 10.1112/S0025579300011955 | MR 1464375
[11] Lüroth, J.: Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe. Math. Annalen. 21 (1883), 411-423. DOI 10.1007/BF01443883 | MR 1510205
[12] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech. Math. J. 18 (1968), 489-522. MR 0229605
[13] Schweiger, F.: Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford, Clarendon Press (1995). MR 1419320 | Zbl 0819.11027
[14] Shen, L. M., Wu, J.: On the error-sum function of Lüroth series. J. Math. Anal. Appl. 329 (2007), 1440-1445. DOI 10.1016/j.jmaa.2006.07.049 | MR 2296934 | Zbl 1154.11331
[15] Wang, B. W., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math. 218 (2008), 1319-1339. DOI 10.1016/j.aim.2008.03.006 | MR 2419924
Partner of
EuDML logo