[2] Dajani, K., Kraaikamp, C.:
Ergodic Theory of Numbers. The Carus Mathematical Monographs, 29. Washington DC, Mathematical Association of America (2002).
MR 1917322 |
Zbl 1033.11040
[4] Falconer, K. J.:
Fractal Geometry: Mathematical Foundations and Application. John Wiley & Sons (1990).
MR 1102677
[6] Fan, A. H., Liao, L. M., Ma, J. H., Wang, B. W.:
Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity. 23 (2010), 1185-1197.
DOI 10.1088/0951-7715/23/5/009 |
MR 2630097
[7] Galambos, J.:
Reprentations of Real Numbers by Infinite Series. Lecture Notes in Mathematics 502, Berlin-Heidelberg-New York, Springer-Verlag (1976).
MR 0568141
[9] Jager, H., Vroedt, C. De:
Lüroth series and their ergodic properties. Nederl. Akad. Wet., Proc. Ser. A72 (1969), 31-42.
MR 0238793 |
Zbl 0167.32201
[12] Šalát, T.:
Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech. Math. J. 18 (1968), 489-522.
MR 0229605
[13] Schweiger, F.:
Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford, Clarendon Press (1995).
MR 1419320 |
Zbl 0819.11027