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THE FRACTIONAL DIMENSIONAL THEORY IN

LÜROTH EXPANSION

Luming Shen, Wuhan and Changsha, Kui Fang, Changsha

(Received May 31, 2010)

Abstract. It is well known that every x ∈ (0, 1] can be expanded to an infinite Lüroth
series in the form of

x =
1

d1(x)
+ . . .+

1

d1(x)(d1(x)− 1) . . . dn−1(x)(dn−1(x)− 1)dn(x)
+ . . . ,

where dn(x) > 2 for all n > 1. In this paper, sets of points with some restrictions on the
digits in Lüroth series expansions are considered. Mainly, the Hausdorff dimensions of the
Cantor sets

Fϕ = {x ∈ (0, 1] : dn(x) > ϕ(n), ∀n > 1}

are completely determined, where ϕ is an integer-valued function defined on N, and ϕ(n)→
∞ as n → ∞.

Keywords: Lüroth series, Cantor set, Hausdorff dimension

MSC 2010 : 11K55, 28A78, 28A80

1. Introduction

For each x ∈ (0, 1], let d1 = d1(x) ∈ N be the unique integer such that

(1.1)
1

d1(x)
< x 6

1

d1(x) − 1
,

This work is supported by National Natural Science Foundation of China (Grant
Nos. 10631040, 10926160), the Science and Nature Fund of Hunan Province (Grant
No. 09JJ3001), and the Key Plan Project of Department of Science and Technology of
Hunan Province (Grant No. 2009NK4038).
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and let the transformation T : (0, 1] → (0, 1] be defined as

(1.2) T (x) := d1(x)(d1(x) − 1)
(
x −

1

d1(x)

)
.

Then for every x ∈ (0, 1], the algorithm of (1.2) leads to an infinite series expansion

in the form

(1.3) x =
1

d1(x)
+

∑

n>2

1

d1(x)(d1(x) − 1) . . . dn−1(x)(dn−1(x) − 1)dn(x)
,

where dn(x) = d1(T
n−1(x)) > 2 (∀n > 1) are called the digits of x. The infinite se-

ries (1.3) is called the Lüroth expansion of x, which was first introduced by J. Lüroth

in 1883 ([11]). Lüroth series expansions play an important role in the representa-
tion theory of numbers, probability theory, and dynamical systems. For metrical

properties, the digits {dn, n > 1} are stochastically independent but with infinite
mean ([7], p. 66). For dynamical properties, the transformation T is invariant and

ergodic with respect to the Lebesgue measure ([2], ([7], p. 80), [9], [13]). And for
more research related to Lüroth expansions, we can refer to [3], [7], [12] and [14].

For the exceptional sets in Lüroth expansions, the earliest research was conducted
by Šalát in [12], where the author obtained the Hausdorff dimension of the sets

Mk = {x ∈ (0, 1] : dn(x) = k, n = 1, 2, . . .} for any k ∈ N, and in the conformal
system theory, K. J. Falconer ([5]) obtained the Hausdorff dimension for the general

case of the above sets, i.e., the set JA = {x ∈ (0, 1] : dn(x) ∈ A for all n > 1},
where A ⊂ N \ {1}. In recent years, the Lüroth expansions have been attaked with

great importance once more. For given probability sequence ~p = (p1, p2, . . .), i.e.,

pj > 0 for all j ∈ N and
∞∑

j=1

pj = 1, A.H. Fan etc. ([6]) obtained the dimension of

the Besicovitch-Eggleston set

E(~p) :=

{
x ∈ (0, 1] : lim

n→∞

1

n

n−1∑

k=0

1{d1(x)=j+1}(T
k(x)) = pj, for all j > 1

}
.

For frequency of digits in the Lüroth expansion, L. Barreiraa and G. Iommi ([1])

computed the Hausdoff dimension of the set Fα = {x ∈ (0, 1] : τk(x) = αk for each
k ∈ N}, where τk(x, n) = card{i ∈ {1, . . . , n} : di(x) = k}, τk(x) = lim

n→∞
τk(x, n)/n,

and α = (α1, . . . , α2, . . .),
∞∑

i=1

αi = 1.

Since the digits {dn(x) : x ∈ (0, 1]}∞n=1 are independent and identically distributed,
an immediate consequence of the Borel-Cantelli lemma yields:

Fact: Let ϕ be an arbitrary positive function on natural numbers N and E(ϕ) =

{x ∈ (0, 1] : dn(x) > ϕ(n) for all n}. Then L (E(ϕ)) is null or full according to
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whether the series
∞∑

n=1
1/ϕ(n) converges or not, where L denotes the Lebesgue mea-

sure.
Since {{dn(x)}∞n=1 : x ∈ (0, 1]} can assume arbitrarily large values, it is possible

that there are points that deviate from the above fact, namely that dn(x) > ϕ(n)

holds for all n > 1. Then it leads to the following questions.

Let ϕ : N → N with ϕ(n) → ∞ as n → ∞. It is of interest to determine the
dimension of the set

Fϕ = {x ∈ (0, 1] : dn(x) > ϕ(n), for all n > 1}.

Recall that
Fϕ = {x ∈ I : dn(x) > ϕ(n), ∀n > 1},

where ϕ : N → N with ϕ(n) → ∞ as n → ∞. We will prove

Theorem 1.1. For any ϕ : N → N with ϕ(n) → ∞ as n → ∞, for any b > 1

write log b = lim sup
n→∞

log log ϕ(n)/n. Then

(1.4) dimH Fϕ =
1

1 + b
.

Throughout this paper, I denotes the interval (0, 1], |·| the diameter of a set, dimH

the Hausdorff dimension and ‘cl’ the closure of a subset of I.

It should be mentioned that some ideas of the paper are derived from [8] and [15],
as the authors proved the continued fraction case.

2. Preliminaries

In this section we present some elementary properties which are enjoyed by the

Lüroth expansion and some lemmas that will be used later.

Proposition 2.1 ([7], p. 18). The series on the right hand side of (1.3) is the

expansion of its sum by the algorithm (1.1) and (1.2) if and only if

dn > 2 for all n > 1.

For any d1, . . . , dn ∈ N with dk > 2 (∀ 1 6 k 6 n), we call

I(d1, . . . , dn) = {x ∈ I : dk(x) = dk, 1 6 k 6 n}

an n-th order basic cylinder.
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Proposition 2.2 ([7], p. 67). For any d1, . . . , dn ∈ N with dk > 2 (1 6 k 6 n),

the n-th order basic interval I(d1, . . . , dn) is the interval with the endpoints

1

d1
+

1

d1(d1 − 1)d2
+ . . . +

n−1∏

k=1

1

dk(dk − 1)

1

dn
,

and

1

d1
+

1

d1(d1 − 1)d2
+ . . . +

n−1∏

k=1

1

dk(dk − 1)

1

dn
+

n∏

k=1

1

dk(dk − 1)
.

As a consequence,

(2.1) |I(d1, . . . , dn)| =
n∏

k=1

1

dk(dk − 1)
.

To end this section, we present a simple result which confirms that any changes of

the restrictions on the digits with only finite terms will not influence the final Haus-
dorff dimension. Namely, let {An}

∞
n=1 and {Bn}

∞
n=1 be two sequences of nonempty

subsets of N \ {1} with An = Bn when n is large. Set

A = {x ∈ I : dn(x) ∈ An, for all n > 1},

B = {x ∈ I : dn(x) ∈ Bn, for all n > 1}.

Lemma 2.1. dimH A = dimH B.

P r o o f. Assume that An = Bn when n > N . Notice that

A =
⋃

aj∈Aj,16j6N

{x ∈ I : dj(x) = aj , 1 6 j 6 N, dn(x) ∈ An, ∀n > N}.

We write the terms in the union as A (a1, . . . , aN ) for simplicity. Similarly, for B,

we write

B =
⋃

bj∈Bj ,16j6N

B(b1, . . . , bN ).

Now we write x = [d1(x), d2(x), . . .], where {dn(x)}∞n=1 is the digits sequence of its
Lüroth expansion. Then we define a map Γ: A (a1, . . . , aN ) → B(b1, . . . , bN) as

Γ([a1, . . . , aN , dN+1, . . . , dn, . . .]) = [b1, . . . , bN , dN+1, . . . , dn, . . .],

which means Γ transform an n-th cylinder to another one.
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For any x, x′ ∈ A , we can write x = 1/a1 + . . .+T N(x)/a1(a1 − 1) . . . aN (aN − 1)

and x′ = 1/a1 + . . . + T N(x′)/a1(a1 − 1) . . . aN (aN − 1); then

|Γ(x) − Γ(x′)| =

N∏

j=1

|T Nx − T Nx′|

bj(bj − 1)
=

N∏

j=1

aj(aj − 1)

bj(bj − 1)
|x − x′|.

Thus, dimH A (a1, . . . , aN ) = dimH B(b1, . . . , bN), and dimH A (a1, . . . , aN ) 6

dimH B. So, dimH A 6 dimH B. �

3. Proof of Theorem 1.1

In fact, Theorem 1.1 is an immediate consequence of the following two theorems.

Theorem 3.1. For any a > 1 and b > 1, set

E(a, b) = {x ∈ (0, 1] : dn(x) > abn

, ∀n > 1},

Ẽ(a, b) = {x ∈ (0, 1] : dn(x) > abn

, ∀n}.

Then dimH E(a, b) = dimH Ẽ(a, b) = 1/(1 + b).

Theorem 3.2. Set F = {x ∈ I : dn(x) → ∞ as n → ∞}. Then dimH F = 1
2 .

We will prove Theorem 1.1 by assuming Theorems 3.1 and 3.2 hold and the proof
of Theorems 3.1 and 3.2 will be postponed to the end of this section.

P r o o f of Theorem 1.1. Recall that log b = lim sup
n→∞

log log ϕ(n)/n, hence for any

ε > 0 there exists N ∈ N such that for all n > N , ϕ(n) 6 e(b+ε)n

. Thus

Fϕ ⊃
{
x ∈ I : dj(x) > ϕ(j), 1 6 j 6 N, dn(x) > e(b+ε)n

, ∀n > N
}
.

Therefore, by Lemma 2.1 and Theorem 3.1, we have dimH Fϕ > 1/(1 + b + ε). Let-

ting ε → 0, we get

dimH Fϕ >
1

1 + b
.

For the lower bound, we will distinguish two cases according to whether b = 1 or
b > 1.

(i) b = 1. It is evident that Fϕ ⊂ F. Thus, by Theorem 3.2, we have

dimH Fϕ 6
1

2
=

1

1 + b
.

(ii) b > 1. For any ε > 0, ϕ(n) > e(b−ε)n

holds for infinitely many n’s. Thus,

Fϕ ⊂ Ẽ(e, b − ε). So, by Theorem 3.1, we have dimH Fϕ 6 1/(1 + b − ε). Letting
ε → 0, we obtain dimH Fϕ 6 1/(1 + b). �
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4. Proof of Theorem 3.1

We will show dimH Ẽ(a, b) 6 1/(b + 1) and dimH E(a, b) > 1/(b + 1).

4.1. Upper bound. To get the upper bound, a suitable covering system is
needed.

A covering system. We mention that the main idea is borrowed from Lúczak
([10]) for the case of continued fractions. First, we introduce some notation. For any

d1, . . . , dn ∈ N, let

Qn = Qn(d1, . . . , dn) =

n∏

k=1

dk, qn = qn(d1, . . . , dn) =

n∏

k=1

(dk − 1),

Pn = Pn(d1, . . . , dn) = Qnqn−1

(
1

d1
+

n∑

j=2

1

d1(d1 − 1) . . . dj−1(dj−1 − 1)dj

)
.

If dj = dj(x) (1 6 j 6 n) for some x ∈ (0, 1], we denote qn = qn(x), Qn = Qn(x)

and Pn = Pn(x) for simplicity. Then Pn(x)/Qn(x)qn−1(x) is nothing but the n-th
approximate term of x in its Lüroth expansion, i.e.,

(4.1) x =
Pn(x)

qn−1(x)Qn(x)
+

T n(x)

qn(x)Qn(x)
.

Lemma 4.1. For any 1 < c < b,

Ẽ(a, b) ⊂ {x ∈ I : Qn+1(x) > max{Qn(x)c, acn+1

} i.o. n}.

P r o o f. Fix an x ∈ Ẽ(a, b) and m ∈ N. Then there exists k > m such that

Qm(x) < abkcm−k

and dk(x) > abk

.

Set f(n) = abkcn−k

. We have Qm(x) < f(m), Qk(x) > f(k). Let m 6 n < k be the
smallest integer such that Qn(x) < f(n) and Qn+1(x) > f(n+1). As a consequence,

we have

(4.2) Qn+1(x) > max{Qn(x)c, acn+1

}.

Fix 1 < c < b, a > 1 and t = 4(c + 1). For any Q > 2, let

JQ =
{

B
( Pn(x)

qn−1(x)Qn(x)
,

2n+1

Qn(x)(1+c)

)
: x ∈ (0, 1], Qn > acn+1/t, Qn = Q

}
.

Then

IQ =
{
B

( Pn(x)

qn−1(x)Qn(x)
,

2

Qn(x)t

)
: x ∈ (0, 1], Qn(x) = Q

}
.

�
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Lemma 4.2. For any Q0 > 2, we have

(4.3) Ẽ(a, b) ⊂

∞⋃

Q=Q0

( ⋃

B∈JQ

B ∪
⋃

B∈IQ

B

)
.

P r o o f. By the definition of Pn, Qn and qn, we have qn > 2−nQn for all n > 1.

Then, by (4.1), it follows that for any x ∈ (0, 1]

(4.4)
∣∣∣x −

Pn(x)

qn−1(x)Qn(x)

∣∣∣ 6
1

qn(x)Qn(x)(dn+1(x) − 1)
6

2n+1

Qn(x)Qn+1(x)
.

Fix x ∈ Ẽ(a, b). By Lemma 4.1, there exists n ∈ N such that Qn(x) > 2n > Q0 and

Qn+1(x) > max{Qn(x)c, acn+1

}.

(i) If Qn(x) > acn+1/t, then by (4.4)

∣∣∣x −
Pn(x)

qn−1(x)Qn(x)

∣∣∣ 6
2n+1

Qn(x)Qn+1(x)
6

2n+1

Qn(x)1+c
.

Thus, x ∈ B(Pn(x)/qn−1(x)Qn(x), 2n+1/Qn(x)(1+c)) as Qn(x) > acn+1/t.

(ii) If Qn(x) < acn+1/t, then Qn+1(x) > Qn(x)t, thus,

∣∣∣x −
Pn(x)

qn−1(x)Qn(x)

∣∣∣ 6
2n+1

Qn(x)Qn+1(x)
6

2

Qn(x)t
.

Therefore, x ∈ B(Pn(x)/qn−1(x)Qn(x), 2/Qn(x)t). �

Lemma 4.3 ([10]). Let k, m be natural numbers. Denote by S(m, k) the number

of vectors (k1, . . . , kn) of natural numbers such that 1 6 n 6 k and
n∏

j=1

kj 6 m, i.e.,

S(m, k) = ♯

{
(k1, . . . , kn) ∈ N

n : 1 6 n 6 k,

n∏

j=1

kj 6 m

}
.

Then

S(m, k) 6 m(2 + log m)k−1.

P r o o f. It can be done by induction. In [10], a detailed proof is given. �
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Lemma 4.2 [The number of intervals in JQ]. For any k > 1, take

Sk = {B ∈ JQ : ak−1 6 Q < ak}.

Then we have

(4.5) ♯Sk 6 ak(2 + log ak)logc kt−2.

P r o o f. Lemma 4.3 will be applied to prove this assertion. Notice that Pn, Qn

and qn−1 can be uniquely determined by d1, . . . , dn, hence

♯Sk 6 ♯

{
(d1, . . . , dn) : a

1
t
cn+1

6

n∏

j=1

dj = Q, and ak−1
6 Q < ak

}

6 ♯

{
(d1, . . . , dn) :

n∏

j=1

dj 6 ak, n + 1 6 logc kt

}

6 ak
(
2 + log ak

)logc kt−2
.

�

Lemma 4.5 [The number of intervals in IQ]. For any Q > 2, ♯{B : B ∈ IQ} 6

Q3.

P r o o f. Since any Pn/qn−1Qn is uniquely determined by the sequence (d1, . . . ,

dn), so that for any fixed Q > 1 we have

♯{qn−1 : Qn = Q} 6 ♯{qn−1 : qn−1 6 Q} 6 Q,

♯{Pn : Qn = Q} 6 ♯{Pn : Pn 6 Q2} 6 Q2,

♯{B : B ∈ IQ} = ♯{(Pn(x), qn−1(x)) : x ∈ (0, 1], Qn = Q}

6 ♯{qn−1 : Qn = Q} × ♯{Pn : Qn = Q} 6 Q3.

�

Definition 4.1 ([4], p. 42). Let X be a metric space. If F ⊂ X and s ∈ [0, +∞),
for any δ > 0 define

H s(F ) = lim
δ→0

inf

{ ∞∑

i=1

|Ui|
s : Ui is the δ-covering of F

}
.

Then H s(F ) is called the s-dimensional Hausdorff measure of F , and the Hausdorff
dimension of the set F is defined by

dimH F = inf{s > 0: H s(F ) = 0}.
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Proposition 4.1. For any a > 1, b > 1, we have

dimH Ẽ(a, b) 6
1

1 + b
.

P r o o f. Fix ε > 0 and 1
2 (1 + b) < c < b. Take s = (1 + 2ε)/(1 + c) and choose

k1 large enough such that, for any k > k1,

(4.6) (ak(2 + log ak)logc kt−2) · (a1+b2(kt)logc 2) 6 ak(1+ε).

Note that Lemma 4.2 gives a covering system of Ẽ(a, b), namely,

Ẽ(a, b) ⊂

∞⋃

Q=ak1

( ⋃

B∈JQ

B ∪
⋃

B∈IQ

B

)
=

( ∞⋃

k=k1+1

⋃

B∈Sk

B

)
∪

( ∞⋃

Q=ak1

⋃

B∈IQ

B

)
.

So, we have

H s(Ẽ(a, b)) 6 lim inf
k1→∞

∞∑

k=k1+1

∑

B∈Sk

|B|s + lim inf
k1→∞

∞∑

Q=ak1

∑

B∈IQ

|B|s =: I1 + I2.

Note that for any B ∈ Sk,

|B| =
2n+2

Q1+c
n

6
2(kt)logc 2

a(k−1)(1+c)
6

a1+b2(kt)logc 2

ak(1+c)
.

Then, by Lemma 4.4 and (4.6), we have

I1 6 lim inf
n→∞

∞∑

k=k1+1

(
a1+b2(kt)logc 2

ak(1+c)

)s

♯Sk

6 lim inf
k1→∞

∞∑

k=k1+1

(
a1+b2(kt)logc 2

ak(1+c)

)s

ak(2 + log ak)logc kt−2

6 lim inf
n→∞

∞∑

k=k1+1

1

ak(1+c)s
ak(1+ε) = lim inf

n→∞

∞∑

k=k1+1

a−kε

< ∞.

For I2, by Lemma 4.5, we have

I2 = lim inf
k1→∞

∞∑

Q=ak1

4s

Qts
♯IQ 6 lim inf

k1→∞

∞∑

Q=ak1

4s

Qts
· Q3

= lim inf
k1→∞

∞∑

Q=ak1

4s

Q4+8ε
· Q3 < ∞.
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Thus we have dimH Ẽ(a, b) 6 s. Letting c → b and ε → 0, we obtain

dimH Ẽ(a, b) 6
1

1 + b
.

�

4.2. Lower bound. The lower bound can be obtained as a simple consequence
of a general method. Example 4.6 from [2] states the following:

Lemma 4.6 ([4]). If [0, 1] = E0 ⊃ E1 ⊃ . . . are sets each of which is a finite

union of disjoint closed intervals, and each interval of En−1 contains at least mn

intervals of En which are separated by gaps of length at least εn, and if mn > 2 and

εn > εn+1 > 0, then

(4.7) dimH

∞⋂

n=1

En > lim inf
n→∞

log(m1 . . . mn−1)

− log(mnεn)
.

P r o o f. We will apply Lemma 4.6 to the set

F1 = {x ∈ (0, 1] : abn

< dn(x) 6 3abn

for all n > 1},

which is a subset of E(a, b).

For any n > 1, we write

J(d1, . . . , dn) =
⋃

abn+1<dn+163abn+1

cl I(d1, . . . , dn, dn+1)

for an n-th order realizable interval with respect to F1, if abk

< dk 6 3abk

for each
1 6 k 6 n. Then set

En =
⋃

J(d1, . . . , dn),

where the union is taken over all n-th order realizable intervals. Then it is easy to
see that

F1 =

∞⋂

n=1

En.

It is evident that, for all n > 1,

(4.8) mn >
1

2
abn

.
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Now we will give a bound estimation on the gap εn of any two n-th order realizable

intervals. Note that for each n-th order realizable interval J(d1, . . . , dn), one has

J(d1, . . . , dn) ⊂ I(d1, . . . , dn).

Moreover, from Proposition 2.2, for n large enough, the gap between the right end-

point of the interval I(d1, . . . , dn) and the right endpoint of the interval J(d1, . . . , dn)

is

(
1

d1
+

1

d1(d1 − 1)d2
+ . . . +

n−1∏

k=1

1

dk(dk − 1)

1

dn
+

n−1∏

k=1

1

dk(dk − 1)

1

dn − 1

)
(4.9)

−

(
1

d1
+

1

d1(d1 − 1)d2
+ . . . +

n−1∏

k=1

1

dk(dk − 1)

1

dn
+

n∏

k=1

1

dk(dk − 1)

1

abn+1

)

>
1

2
×

1

32n

n∏

k=1

1

a2bk
:= εn.

Hence, by Lemma 4.6, we have dimH F1 > 1/(1 + b), and thus

dimH E(a, b) > dimH F1 >
1

1 + b
.

�

5. Proof of Theorem 3.2

To get Theorem 3.2, in the light of Theorem 3.1 we only need to show dimH F 6 1
2 .

Note that

F =

∞⋂

M=1

∞⋃

N=1

{x ∈ I : dn(x) > M, ∀n > N}.

For any ε > 0, take M = M(ε) large enough such that

(5.1)
∞∑

d=M

( 1

d(d − 1)

) 1
2
+ε

< 1.

Set F (M) = {x ∈ I : dn(x) > M, ∀n > 1}. Lemma 2.1 implies, for any N > 1,

dimH{x ∈ I : dn(x) > M, ∀n > N} = dimH F (M).
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So, dimH F 6 dimH F (M). On the other hand,

H
1
2
+ε(F (M)) 6 lim inf

N→∞

∑

dk>M,16k6N

|I(d1, . . . , dN )|
1
2
+ε

= lim inf
N→∞

∑

dk>M,16k6N

( N∏

k=1

1

dk(dk − 1)

) 1
2
+ε

= lim inf
N→∞

( ∞∑

d=M

1

d(d − 1)

)N( 1
2
+ε)

< 1.

Thus,

dimH F 6 dimH F (M) 6
1

2
+ ε.

By letting ε → 0, we obtain dimH F 6 1
2 . �
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