Previous |  Up |  Next

Article

Keywords:
vector measures; integrable functions; sequences on Banach spaces; summing operators
Summary:
We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for $1$-summing operators between Banach spaces.
References:
[1] Bartle, R. G., Dunford, N., Schwartz, J.: Weak Compactness and Vector Measures. Canad. J. Math. 7 (1955), 289-305. DOI 10.4153/CJM-1955-032-1 | MR 0070050 | Zbl 0068.09301
[2] Blasco, O., Calabuig, J. M., Signes, T.: A bilinear version of Orlicz-Pettis Theorem. J. Math. Anal. Appl. 348 (2008), 150-164. DOI 10.1016/j.jmaa.2008.07.013 | MR 2449334 | Zbl 1161.46005
[3] Calabuig, J. M.: Integración bilineal. Tesis doctoral (2004).
[4] Curbera, G. P.: Operators into $L^1$ of a vector measure and applications to Banach lattices. Math. Ann. 293 (1992), 317-330. DOI 10.1007/BF01444717 | MR 1166123
[5] Diestel, J., Jr., J. J. Uhl: Vector Measures. Amer. Math. Soc. Surveys 15, Providence, R.I. (1977). MR 0453964 | Zbl 0369.46039
[6] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, Cambridge (1995). MR 1342297 | Zbl 0855.47016
[7] Ferrando, I., Rodríguez, J.: The weak topology on $L^{p}$ of a vector measure. Topology and its Applications 55 (2008), 1439-1444. MR 2427417
[8] Lewis, D. R.: Integration with respect to vector measures. Pacific J. Math. 33 (1970), 157-165. DOI 10.2140/pjm.1970.33.157 | MR 0259064 | Zbl 0195.14303
[9] Okada, S., Ricker, W., Sánchez-Pérez, E. A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces. Operator Theory: Advances and Applications, Vol. 180, Birkhäuser (2008). MR 2418751
Partner of
EuDML logo