Previous |  Up |  Next

Article

Keywords:
compact ring; group of units; Jacobson radical; left linearly compact ring; Mersenne number; monothetic group; primary ring; summable set; totally bounded ring
Summary:
In this paper, we extend some results of D. Dolzan {on finite rings} to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^{\aleph _0}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.
References:
[1] Bourbaki, N.: Elemente der Mathematik. Allgemaine Topologie. Topologische Gruppen. Zahlen und die mit ihnen zusammenhängenden Gruppen und Räume (Russian). Nauka Moskau (1969).
[2] Bourbaki, N.: Elements de mathematique. Algebre commutative (Russian). Mir Moskau (1971). MR 2272929
[3] Dantzig, D. Van: Zur topologischen Algebra. Mathematische Annalen 107 (1933), 591.
[4] Dolžan, D.: Multiplicative sets of idempotents in finite ring. J. Algebra 304 (2006), 271-277. DOI 10.1016/j.jalgebra.2006.03.022 | MR 2256389
[5] Eckstein, F.: Semigroup methods in ring theory. J. Algebra 12 (1969), 177-190. DOI 10.1016/0021-8693(69)90044-1 | MR 0241468 | Zbl 0179.33501
[6] Eldridge, K. E., Fischer, I.: DCC rings with a cyclic group of units. Duke Math. J. 34 (1967), 243-248. DOI 10.1215/S0012-7094-67-03428-X | MR 0214618
[7] Gilmer, R. W., jun.: Finite rings having a cyclic multiplicative group of units. Am. J. Math. 85 (1963), 447-452. DOI 10.2307/2373134 | MR 0154884 | Zbl 0113.26501
[8] Kaplansky, I.: Topological rings. Am. J. Math. 69 (1947), 153-183. DOI 10.2307/2371662 | MR 0019596 | Zbl 0034.16604
[9] Leptin, H.: Linear kompakte Moduln und Ringe. Math. Z. 62 (1955), 241-267. DOI 10.1007/BF01180634 | MR 0069811 | Zbl 0064.03201
[10] Nicholson, W. K., Zhou, Y.: Clean general rings. J. Algebra 291 (2005), 297-311. DOI 10.1016/j.jalgebra.2005.01.020 | MR 2158525 | Zbl 1084.16023
[11] Raghavendran, R.: A class of finite rings. Compos. Math. 22 (1970), 49-57. MR 0263876 | Zbl 0212.37901
[12] Serre, J.-P.: Cours d'aritmetique. Le mathematicien (French). Presses Universitaires de France Paris (1970). MR 0255476
[13] Ursul, M.: Topological Rings Satisfying Compactness Conditions. Mathematics and its Applications. Vol. 549. Kluwer Academic Publishers Dordrecht (2002). MR 1959470
Partner of
EuDML logo