Article
Keywords:
compact ring; group of units; Jacobson radical; left linearly compact ring; Mersenne number; monothetic group; primary ring; summable set; totally bounded ring
Summary:
In this paper, we extend some results of D. Dolzan {on finite rings} to profinite rings, a complete classification of profinite commutative rings with a monothetic group of units is given. We also prove the metrizability of commutative profinite rings with monothetic group of units and without nonzero Boolean ideals. Using a property of Mersenne numbers, we construct a family of power $2^{\aleph _0}$ commutative non-isomorphic profinite semiprimitive rings with monothetic group of units.
References:
[1] Bourbaki, N.: Elemente der Mathematik. Allgemaine Topologie. Topologische Gruppen. Zahlen und die mit ihnen zusammenhängenden Gruppen und Räume (Russian). Nauka Moskau (1969).
[2] Bourbaki, N.:
Elements de mathematique. Algebre commutative (Russian). Mir Moskau (1971).
MR 2272929
[3] Dantzig, D. Van: Zur topologischen Algebra. Mathematische Annalen 107 (1933), 591.
[12] Serre, J.-P.:
Cours d'aritmetique. Le mathematicien (French). Presses Universitaires de France Paris (1970).
MR 0255476
[13] Ursul, M.:
Topological Rings Satisfying Compactness Conditions. Mathematics and its Applications. Vol. 549. Kluwer Academic Publishers Dordrecht (2002).
MR 1959470