Previous |  Up |  Next

Article

Keywords:
iterated function system; self-affine set; self-affine measure; singularity
Summary:
In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular.
References:
[1] Erdős, P.: On family of symmetric Bernoulli convolutions. Amer. J. Math. 61 (1939), 974-976. DOI 10.2307/2371641 | MR 0000311
[2] Falconer, K. J.: The Geometry of Fractal Sets. Cambridge University Press Cambridge (1985). MR 0867284 | Zbl 0587.28004
[3] Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons Chichester (1990). MR 1102677 | Zbl 0689.28003
[4] Falconer, K. J.: Techniques in Fractal Geometry. John Wiley & Sons Chichester (1997). MR 1449135 | Zbl 0869.28003
[5] Feng, D.-J., Wang, Y.: Bernoulli convolutions associated with certain non-Pisot numbers. Adv. Math. 187 (2004), 173-194. DOI 10.1016/j.aim.2003.05.002 | MR 2074175 | Zbl 1047.60044
[6] Garsia, A. M.: Arithmetic properties of Bernoulli convolutions. Trans. Am. Math. Soc. 102 (1962), 409-432. DOI 10.1090/S0002-9947-1962-0137961-5 | MR 0137961 | Zbl 0103.36502
[7] Hu, T.-Y.: Asymptotic behavior of Fourier transforms of self-similar measures. Proc. Am. Math. Soc. 129 (2001), 1713-1720. DOI 10.1090/S0002-9939-00-05709-9 | MR 1814101 | Zbl 0965.28002
[8] Hutchinson, J. E.: Fractal and self similarity. Indiana Univ. Math. J. 30 (1981), 713-747. DOI 10.1512/iumj.1981.30.30055 | MR 0625600
[9] Jorgensen, P. E. T., Kornelson, K. A., Shuman, K. L.: Affine systems: asymptotics at infinity for fractal measures. Acta Appl. Math. 98 (2007), 181-222. DOI 10.1007/s10440-007-9156-4 | MR 2338387 | Zbl 1149.28004
[10] Lau, K.-S., Ngai, S.-M., Rao, H.: Iterated function systems with overlaps and self-similar measures. J. Lond. Math. Soc., II. Ser. 63 (2001), 99-116. DOI 10.1112/S0024610700001654 | MR 1802760 | Zbl 1019.28005
[11] Li, J.-L.: Singularity of certain self-affine measures. J. Math. Anal. Appl. 347 (2008), 375-380. DOI 10.1016/j.jmaa.2008.05.083 | MR 2440333 | Zbl 1153.28303
[12] Niu, M., Xi, L.-F.: Singularity of a class of self-similar measures. Chaos Solitons Fractals 34 (2007), 376-382. DOI 10.1016/j.chaos.2006.03.029 | MR 2327412 | Zbl 1134.28009
[13] Peres, Y., Schlag, W., Solomyak, B.: Sixty years of Bernoulli convolutions. Fractal Geometry and Stochastics, II. Proc. 2nd Conf. (Greifswald/Koserow, Germany, 1998) Birkhäuser Basel (2000), Prog. Probab. 46 (2000), 39-65. MR 1785620 | Zbl 0961.42006
[14] Salem, R.: Algebraic Numbers and Fourier Analysis. D. C. Heath and Company Boston (1963). MR 0157941 | Zbl 0126.07802
[15] Strichartz, R. S.: Self-similarity in harmonic analysis. J. Fourier Anal. Appl. 1 (1994), 1-37. DOI 10.1007/s00041-001-4001-z | MR 1307067 | Zbl 0851.42001
Partner of
EuDML logo