[2] Adámek, J., Herrlich, H., Strecker, G. E.:
Abstract and Concrete Categories: The Joy of Cats. Dover Publications, Mineola, New York 2009.
MR 1051419
[3] Anderson, F. W., Fuller, K. R.:
Rings and Categories of Modules. Second edition. Springer-Verlag, 1992.
MR 1245487 |
Zbl 0765.16001
[4] Betti, R., Kasangian, S.:
Tree automata and enriched category theory. Rend. Ist. Mat. Univ. Trieste 17 (1985), 71–78.
MR 0863557 |
Zbl 0614.68045
[5] Borceux, F.:
Handbook of Categorical Algebra. Volume 2: Categories and Structures. Cambridge University Press, 1994.
MR 1313497 |
Zbl 0911.18001
[8] Dilworth, R. P.:
Non-commutative residuated lattices. Trans. Amer. math. Soc. 46 (1939), 426–444.
MR 0000230 |
Zbl 0022.10402
[9] Gierz, G., Hofmann, K., al., et:
Continuous Lattices and Domains. Cambridge University Press, 2003.
MR 1975381 |
Zbl 1088.06001
[16] Herrlich, H., Strecker, G. E.:
Category Theory. Third edition. Heldermann Verlag, 2007.
MR 2377903 |
Zbl 1125.18300
[17] Höhle, U.: Quantaloids as categorical basis for many valued mathematics. In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, eds.), Johannes Kepler Universität, Linz 2010, pp. 91–92.
[18] Hungerford, T.: Algebra. Springer-Verlag, 2003.
[20] Joyal, A., Tierney, M.:
An extension of the Galois theory of Grothendieck. Mem. Am. Math. Soc. 309 (1984), 1–71.
MR 0756176 |
Zbl 0541.18002
[21] Kasangian, S., Rosebrugh, R.:
Decomposition of automata and enriched category theory. Cah. Topologie Géom. Différ. Catég. 27 (1986), 4, 137–143.
MR 0885374 |
Zbl 0625.68040
[22] Kelly, G. M.:
Basic concepts of enriched category theory. Repr. Theory Appl. Categ. 10 (2005), 1–136.
MR 2177301 |
Zbl 1086.18001
[23] Kruml, D., Paseka, J.:
Algebraic and categorical aAspects of quantales. In: Handbook of Algebra (M. Hazewinkel, ed.), 5, Elsevier, 2008, pp. 323–362.
MR 2523454
[24] Lawvere, F. W.:
Metric spaces, generalized logic and closed categories. Repr. Theory Appl. Categ. 1 (2002), 1–37.
MR 1925933 |
Zbl 1078.18501
[26] Lane, S. Mac:
Categories for the Working Mathematician. Second edition. Springer-Verlag, 1998.
MR 1712872
[28] Mulvey, C.:
& Rend. Circ. Mat. Palermo II (1986), 12, 99–104.
MR 0853151
[30] Mulvey, C. J., Pelletier, J. W.:
On the quantisation of spaces. J. Pure Appl. Algebra 175 (2002), 1-3, 289–325.
MR 1935983 |
Zbl 1026.06018
[31] Paseka, J.: Quantale Modules. Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University, Brno 1999.
[32] Paseka, J.:
A note on nuclei of quantale modules. Cah. Topologie Géom. Différ. Catégoriques 43 (2002), 1, 19–34.
MR 1892106 |
Zbl 1015.06017
[33] Pitts, A. M.:
Applications of sup-lattice enriched category theory to sheaf theory. Proc. Lond. Math. Soc. III. 57 (1988), 3, 433–480.
MR 0960096 |
Zbl 0619.18005
[40] Solovjovs, S.: Powerset operator foundations for categorically-algebraic fuzzy sets theories. In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, ed.), Johannes Kepler Universität, Linz 2010, pp. 143–151.
[42] Solovyov, S.:
On coproducts of quantale algebras. Math. Stud. (Tartu) 3 (2008), 115–126.
MR 2497770 |
Zbl 1160.06007
[44] Solovyov, S.:
A representation theorem for quantale algebras. Contr. Gen. Alg. 18 (2008), 189–198.
MR 2407586 |
Zbl 1147.06010
[45] Solovyov, S.:
Sobriety and spatiality in varieties of algebras. Fuzzy Sets Syst. 159 (2008), 19, 2567–2585.
MR 2450327 |
Zbl 1177.54004
[46] Solovyov, S.:
From quantale algebroids to topological spaces: fixed- and variable-basis approaches. Fuzzy Sets Syst. 161 (2010), 9, 1270–1287.
MR 2603069 |
Zbl 1193.54010
[49] Street, R.:
Cauchy characterization of enriched categories. Repr. Theory Appl. Categ. 4 (2004), 1–16.
MR 2048315 |
Zbl 1099.18005
[50] Street, R.:
Enriched categories and cohomology. Repr. Theory Appl. Categ. 14 (2005), 1–18.
MR 2219705 |
Zbl 1085.18010
[51] Stubbe, I.:
Categorical structures enriched in a quantaloid: categories, distributors and functors. Theory Appl. Categ. 14 (2005), 1–45.
MR 2122823 |
Zbl 1079.18005
[53] Stubbe, I.:
Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories. Cah. Topol. Géom. Différ. Catég. 46 (2005), 2, 99–121.
MR 2153892 |
Zbl 1086.18005
[54] Stubbe, I.:
Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory Appl. Categ. 16 (2006), 283–306.
MR 2223039 |
Zbl 1119.18005
[55] Stubbe, I.:
$\cal Q$-modules are $\cal Q$-suplattices. Theory Appl. Categ. 19 (2007), 4, 50–60.
MR 2369018