Previous |  Up |  Next

Article

Keywords:
$(l)$-group; order convergence; regular measure; Brooks–Jewett theorem; Dieudonné theorem
Summary:
In this paper we present some new versions of Brooks-Jewett and Dieudonné-type theorems for $(l)$-group-valued measures.
References:
[1] Bernau, S. J.: Unique representation of Archimedean lattice group and normal Archimedean lattice rings. Proc. London Math. Soc. 15 (1965), 599–631. MR 0182661
[2] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 29-42. MR 1475257 | Zbl 0918.28009
[3] Boccuto, A.: Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mountains Math. Publ. 10 (1997), 33–54. MR 1469280 | Zbl 0918.28010
[4] Boccuto, A.: Egorov property and weak $\sigma $-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61–66.
[5] Boccuto, A., Candeloro, D.: Dieudonné-type theorems for set functions with values in $(l)$-groups. Real Analysis Exchange 27 (2001/2002), 473–484. MR 1922663
[6] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and convergence results for measures with values in complete $(l)$-groups. J. Math. Anal. Appl. 265 (2002), 170–194. DOI 10.1006/jmaa.2001.7715 | MR 1874264 | Zbl 1006.28012
[7] Boccuto, A., Papanastassiou, N.: Schur and Nikodym convergence-type theorems in Riesz spaces with respect to the (r)-convergence. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 55 (2007), 33–46. MR 2458785 | Zbl 1206.28020
[8] Brooks, J. K.: On a theorem of Dieudonné. Adv. Math. 36 (1980), 165–168. DOI 10.1016/0001-8708(80)90014-6 | MR 0574646 | Zbl 0441.28006
[9] Brooks, J. K., Jewett, R. S.: On finitely additive vector measures. Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1294–1298. DOI 10.1073/pnas.67.3.1294 | MR 0269802 | Zbl 0216.09602
[10] Candeloro, D.: Sui teoremi di Vitali–Hahn–Saks, Dieudonné e Nikodým. Rend. Circ. Mat. Palermo, Ser. II 8 (1985), 439–445. MR 0881420
[11] Candeloro, D., Letta, G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné. Rend. Accad. Naz. Sci. Detta dei XL 9 (1985), 203–213. MR 0899250
[12] Das, R., Papanastassiou, N.: Some types of convergence of sequences of real valued functions. Real Anal. Exch. 29 (2003/2004), 43–58. MR 2061292
[13] Dieudonné, J.: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21–38. MR 0042496
[14] Dunford, N., Schwartz, J.  T.: Linear Operators I. General Theory, Interscience, New York 1958. MR 0117523 | Zbl 0084.10402
[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces, I. North-Holland Publishing Co. 1971. MR 0511676
[16] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Ister Science, Bratislava 1997. MR 1489521
[17] Swartz, C.: The Nikodým boundedness Theorem for lattice-valued measures. Arch. Math. 53 (1989), 390–393. DOI 10.1007/BF01195219 | MR 1016003 | Zbl 0661.28003
[18] Vulikh, B. Z.: Introduction to the theory of partially ordered spaces. Wolters – Noordhoff Sci. Publ., Groningen 1967. MR 0224522 | Zbl 0186.44601
Partner of
EuDML logo