[1] Bernau, S. J.:
Unique representation of Archimedean lattice group and normal Archimedean lattice rings. Proc. London Math. Soc. 15 (1965), 599–631.
MR 0182661
[2] Boccuto, A.:
Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 29-42.
MR 1475257 |
Zbl 0918.28009
[3] Boccuto, A.:
Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mountains Math. Publ. 10 (1997), 33–54.
MR 1469280 |
Zbl 0918.28010
[4] Boccuto, A.: Egorov property and weak $\sigma $-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61–66.
[5] Boccuto, A., Candeloro, D.:
Dieudonné-type theorems for set functions with values in $(l)$-groups. Real Analysis Exchange 27 (2001/2002), 473–484.
MR 1922663
[7] Boccuto, A., Papanastassiou, N.:
Schur and Nikodym convergence-type theorems in Riesz spaces with respect to the (r)-convergence. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 55 (2007), 33–46.
MR 2458785 |
Zbl 1206.28020
[10] Candeloro, D.:
Sui teoremi di Vitali–Hahn–Saks, Dieudonné e Nikodým. Rend. Circ. Mat. Palermo, Ser. II 8 (1985), 439–445.
MR 0881420
[11] Candeloro, D., Letta, G.:
Sui teoremi di Vitali–Hahn–Saks e di Dieudonné. Rend. Accad. Naz. Sci. Detta dei XL 9 (1985), 203–213.
MR 0899250
[12] Das, R., Papanastassiou, N.:
Some types of convergence of sequences of real valued functions. Real Anal. Exch. 29 (2003/2004), 43–58.
MR 2061292
[13] Dieudonné, J.:
Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21–38.
MR 0042496
[14] Dunford, N., Schwartz, J. T.:
Linear Operators I. General Theory, Interscience, New York 1958.
MR 0117523 |
Zbl 0084.10402
[15] Luxemburg, W. A. J., Zaanen, A. C.:
Riesz Spaces, I. North-Holland Publishing Co. 1971.
MR 0511676
[16] Riečan, B., Neubrunn, T.:
Integral, Measure and Ordering. Kluwer Academic Publishers, Ister Science, Bratislava 1997.
MR 1489521
[18] Vulikh, B. Z.:
Introduction to the theory of partially ordered spaces. Wolters – Noordhoff Sci. Publ., Groningen 1967.
MR 0224522 |
Zbl 0186.44601