Previous |  Up |  Next

Article

Keywords:
domain of probability; fuzzy random variable; crisp random event; fuzzy observable; fuzzification; category of $ID$-poset; epireflection; simplex-valued domains
Summary:
The present paper is devoted to the transition from crisp domains of probability to fuzzy domains of probability. First, we start with a simple transportation problem and present its solution. The solution has a probabilistic interpretation and it illustrates the transition from classical random variables to fuzzy random variables in the sense of Gudder and Bugajski. Second, we analyse the process of fuzzification of classical crisp domains of probability within the category $ID$ of $D$-posets of fuzzy sets and put into perspective our earlier results concerning categorical aspects of fuzzification. For example, we show that (within $ID$) all nontrivial probability measures have genuine fuzzy quality and we extend the corresponding fuzzification functor to an epireflector. Third, we extend the results to simplex-valued probability domains. In particular, we describe the transition from crisp simplex-valued domains to fuzzy simplex-valued domains via a “simplex” modification of the fuzzification functor. Both, the fuzzy probability and the simplex-valued fuzzy probability is in a sense minimal extension of the corresponding crisp probability theory which covers some quantum phenomenon.
References:
[1] Bugajski, S.: Statistical maps I. Basic properties. Math. Slovaca 51 (2001), 321–342. MR 1842320 | Zbl 1088.81021
[2] Bugajski, S.: Statistical maps II. Basic properties. Math. Slovaca 51 (2001), 343–361. MR 1842321 | Zbl 1088.81022
[3] Chovanec, F., Frič, R.: States as morphisms. Internat. J. Theoret. Phys. 49 (2010), 3050–3100. DOI 10.1007/s10773-009-0234-4 | MR 2738063 | Zbl 1204.81011
[4] Chovanec, F., Kôpka, F.: $D$-posets. In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures. (K. Engesser, D. M. Gabbay and D. Lehmann, eds.), Elsevier, Amsterdam 2007, pp. 367–428. MR 2408886 | Zbl 1139.81005
[5] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava 2000. MR 1861369
[6] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables. Tatra Mt. Math. Publ. 30 (2005), 21–34. MR 2190245 | Zbl 1150.60304
[7] Frič, R.: Statistical maps: a categorical approach. Math. Slovaca 57 (2007), 41–57. DOI 10.2478/s12175-007-0013-8 | MR 2357806 | Zbl 1137.60300
[8] Frič, R.: Extension of domains of states. Soft Comput. 13 (2009), 63–70. DOI 10.1007/s00500-008-0293-0 | Zbl 1166.28006
[9] Frič, R.: Simplex-valued probability. Math. Slovaca 60 (2010), 607–614. DOI 10.2478/s12175-010-0035-5 | MR 2728526 | Zbl 1249.06032
[10] Frič, R.: States on bold algebras: Categorical aspects. J. Logic Comput. (To appear). DOI:10.1093/logcom/exp014 MR 2802938
[11] Frič, R., Papčo, M.: On probability domains. Internat. J. Theoret. Phys. 49 (2010), 3092–3063. DOI 10.1007/s10773-009-0162-3 | Zbl 1204.81012
[12] Frič, R., Papčo, M.: A categorical approach to probability theory. Studia Logica 94 (2010), 215–230. DOI 10.1007/s11225-010-9232-z | MR 2602573 | Zbl 1213.60021
[13] Gudder, S.: Fuzzy probability theory. Demonstratio Math. 31 (1998), 235–254. MR 1623780 | Zbl 0984.60001
[14] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44 (1994), 21–34. MR 1290269
[15] Mesiar, R.: Fuzzy sets and probability theory. Tatra Mt. Math. Publ. 1 (1992), 105–123. MR 1230469 | Zbl 0790.60005
[16] Papčo, M.: On measurable spaces and measurable maps. Tatra Mt. Math. Publ. 28 (2004), 125–140. MR 2086282 | Zbl 1112.06005
[17] Papčo, M.: On fuzzy random variables: examples and generalizations. Tatra Mt. Math. Publ. 30 (2005), 175–185. MR 2190258 | Zbl 1152.60302
[18] Papčo, M.: On effect algebras. Soft Comput. 12 (2007), 26–35. DOI 10.1007/s00500-007-0171-1
[19] Riečan, B., Mundici, D.: Probability on $MV$-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam 2002, pp. 869–910. MR 1954631 | Zbl 1017.28002
[20] Zadeh, L. A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23 (1968), 421–427. DOI 10.1016/0022-247X(68)90078-4 | MR 0230569 | Zbl 0174.49002
Partner of
EuDML logo