Previous |  Up |  Next

Article

Keywords:
pseudo-effect algebra; lattice pseudo-effect algebra; pseudo-MV-algebra; compatible elements; central element
Summary:
An equivalent definition of compatibility in pseudo-effect algebras is given, and its relationships with central elements are investigated. Furthermore, pseudo-MV-algebras are characterized among pseudo-effect algebras by means of compatibility.
References:
[1] Avallone, A., Barbieri, G., Vitolo., P.: Central elements in pseudo-D-lattices and Hahn decomposition theorem. Boll. Unione Mat. Ital. 9 (2010), III(3), 447-470. MR 2742776
[2] Avallone, A., Vitolo, P.: Pseudo-D-lattices and topologies generated by measures. Italian J. Pure Appl. Math., to appear.
[3] Bennet, M. K., Foulis, D. J.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 10, 1331–1352. DOI 10.1007/BF02283036 | MR 1304942
[4] Butnariu, D., Klement, P.: Triangular Norm-based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht 1993. Zbl 0804.90145
[5] Dvurečenskij, A.: Blocks of pseudo-effect algebras with the Riesz interpolation property. Soft Computing 7 (2003), 441–445. Zbl 1030.06008
[6] Dvurečenskij, A.: Central elements and Cantor–Bernstein theorem for pseudo-effect algebras. J. Austral. Math. Soc. 74 (2003), 121–143. DOI 10.1017/S1446788700003177 | MR 1948263
[7] Dvurečenskij, A.: New quantum structures. In: Handbook of quantum logic and quantum structures (K. Engesser, D. M. Gabbay, and D. Lehmann, eds.), Elsevier, 2007. MR 2408886 | Zbl 1134.81006
[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht 2000. MR 1861369
[9] Dvurečenskij, A., Vetterlein, T.: Congruences and states on pseudoeffect algebras. Found. Phys. Lett. 14 (2001), 5, 425–446. DOI 10.1023/A:1015561420306 | MR 1857794
[10] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties. Internat. J. Theoret. Phys. 40 (2001),3, 685–701. MR 1831592 | Zbl 0994.81009
[11] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representations. Internat. J. Theoret. Phys. 40 (2001), 3, 703–726. DOI 10.1023/A:1004144832348 | MR 1831593 | Zbl 0994.81009
[12] Dvurečenskij, A., Vetterlein, T.: On pseudo-effect algebras which can be covered by pseudo MV-algebras. Demonstratio Math. 36 (2003), 2, 261–282. MR 1984338 | Zbl 1039.03049
[13] Epstein, L. G., Zhang, J.: Subjective probabilities on subjectively unambiguous events. Econometrica 69 (2001), 2, 265–306. DOI 10.1111/1468-0262.00193 | MR 1819756 | Zbl 1020.91048
[14] Georgescu, G., Iorgulescu, A.: Pseudo-MV algebras. Mult.-Valued Log. 6 G. C. Moisil memorial issue. (2001), 1-2, 95–135. MR 1817439 | Zbl 1014.06008
[15] Kôpka, F., Chovanec, F.: D-posets. Mathematica Slovaca 44 (1994), 21–34. MR 1290269
[16] Pulmannová, S.: Generalized Sasaki projections and Riesz ideals in pseudoeffect algebras. Internat. J. Theoret. Phys. 42 (2003), 7, 1413–1423. DOI 10.1023/A:1025723811099 | MR 2021220 | Zbl 1053.81008
[17] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151–158. MR 1725293
[18] Yun, S., Yongming, L., Maoyin, C.: Pseudo difference posets and pseudo Boolean D-posets. Internat. J. Theoret. Phys. 43 (2004), 12, 2447–2460. DOI 10.1007/s10773-004-7710-7 | MR 2110077 | Zbl 1059.81018
Partner of
EuDML logo