Previous |  Up |  Next

Article

Keywords:
semilinear differential inclusion; selection theorem; mild solution; lower Scorza Dragoni multifunction; mild periodic solution.
Summary:
In this paper we prove two existence theorems for abstract boundary value problems controlled by semilinear evolution inclusions in which the nonlinear part is a lower Scorza-Dragoni multifunction. Then, by using these results, we obtain the existence of periodic mild solutions.
References:
[1] Andres J., Malaguti L., Taddei V.: On Boundary value problems in Banach spaces. Dynam. Systems Appl. 18 (2009), 275–302. MR 2543232 | Zbl 1195.34091
[2] Anichini G., Zecca P.: Problemi ai limiti per equazioni differenziali multivoche su intervalli non compatti. Riv. Mat. Univ. Parma 1 (1975), 199–212. MR 0447728 | Zbl 0359.34057
[3] Artstein Z., Prikry K.: Carathéodory selections and the Scorza Dragoni property. J. Math. Anal. Appl. 127 (1987), no. 2, 540–547. DOI 10.1016/0022-247X(87)90128-4 | MR 0915076 | Zbl 0649.28011
[4] Brezis H.: Analisi Funzionale-Teoria e Applicazioni. Liguori, Napoli, 1986.
[5] Chang K.C.: The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure Appl. Math. 33 (1980), 117–146. DOI 10.1002/cpa.3160330203 | MR 0562547 | Zbl 0405.35074
[6] Conti R.: Recent trends in the theory of boundary value problems for ordinary differential equations. Boll. Univ. Mat. Ital. 22 (1967), 135–178. MR 0218650 | Zbl 0154.09101
[7] Himmelberg C.J.: Measurable relations. Fund. Math. 87 (1975), 53–71. MR 0367142 | Zbl 0465.28002
[8] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis. 1, Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775 | Zbl 0943.47037
[9] Kamenskii M.I., Obukhovskii V.V., Zecca P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter Ser. Nonlinear Anal. Appl. 7, De Gruyter, Berlin-New York, 2001. MR 1831201 | Zbl 0988.34001
[10] Kolmogorov A.N., Fomin S.V.: Introductory Real Analysis. Prentice-Hall, Inc. Englewood Cliffs, N.J., 1970. MR 0267052 | Zbl 0213.07305
[11] Krein S.G.: Linear Differential Equations in Banach Spaces. American Mathematical Society, Providence, R.I., 1971. MR 0342804
[12] Martin R.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York, 1976. MR 0492671 | Zbl 0333.47023
[13] Michael E.: Continuous selections I. Ann. of Math. (2) 63 (1956), 361–382. DOI 10.2307/1969615 | MR 0077107 | Zbl 0071.15902
[14] Naito K.: Approximation and controllability for solution of semilinear control systems. Control Theory Adv. Tech. 1 (1985), 165–173. MR 0927841
[15] Obukhovskii V.V., Zecca P.: On Boudary value problems for degenerate differential inclusions in Banach spaces. Abstr. Appl. Anal. 13 (2003), 769–784. DOI 10.1155/S108533750330301X | MR 1996923
[16] Papageorgiou N.S.: Boundary value problems for evolution inclusions. Ann. Polon. Math. 50 (1990), 251–259. MR 1064999 | Zbl 0715.35090
[17] Papageorgiou N.S.: Boundary value problems and periodic solutions for semilinear evolution inclusions. Comment. Math. Univ. Carolin. 35 (1994), no. 2, 325–336. MR 1286579 | Zbl 0807.34077
[18] Papageorgiou N.S.: Existence of solutions for boundary problems of semilinear evolution inclusions. Indian J. Pure Appl. Math. 23 (1992), no. 7, 477–488. MR 1174609
[19] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983. MR 0710486 | Zbl 0516.47023
[20] Zecca P., Zezza P.: Nonlinear boundary value problems in Banach spaces for multivalue differential equations on a non-compact interval. Nonlinear Anal. T.M.A. 3 (1979), 347–352. MR 0532895 | Zbl 0443.34060
Partner of
EuDML logo