[7] Cahen B.:
Weyl quantization for principal series. Beiträge Algebra Geom. 48 (2007), no. 1, 175–190.
MR 2326408 |
Zbl 1134.22010
[8] Cahen B.:
Contraction of compact semisimple Lie groups via Berezin quantization. Illinois J. Math. 53 (2009), no. 1, 265–288.
MR 2584946 |
Zbl 1185.22008
[9] Cahen B.:
Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310.
MR 2572131 |
Zbl 1185.22007
[10] Cahen B.:
Weyl quantization for the semi-direct product of a compact Lie group and a vector space. Comment. Math. Univ. Carolin. 50 (2009), no. 3, 325–347.
MR 2573408
[11] B. Cahen:
A contraction of the principal series by Berezin-Weyl quantization. Univ. Metz, preprint, 2010.
MR 2682458
[13] Cotton P., Dooley A.H.:
Contraction of an adapted functional calculus. J. Lie Theory 7 (1997), 147–164.
MR 1473162 |
Zbl 0882.22015
[16] Helgason S.:
Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001.
MR 1834454 |
Zbl 0993.53002
[17] Hörmander L.: The Analysis of Linear Partial Differential Operators. Vol. 3, Section 18.5, Springer, Berlin, Heidelberg, New-York, 1985.
[18] Kirillov A.A.:
Lectures on the Orbit Method. Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004.
MR 2069175
[19] Knapp A.W.:
Representation Theory of Semisimple Groups. An Overview Based on Examples. Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986.
MR 0855239 |
Zbl 0993.22001
[20] B. Kostant:
Quantization and unitary representations. in Modern Analysis and Applications, Lecture Notes in Mathematics, 170, Springer, Berlin, Heidelberg, New-York, 1970, pp. 87–207.
DOI 10.1007/BFb0079068 |
MR 0294568 |
Zbl 0249.53016
[21] Mackey G.:
On the analogy between semisimple Lie groups and certain related semi-direct product groups. in Lie Groups and their Representations, I.M. Gelfand Ed., Hilger, London, 1975.
MR 0409726 |
Zbl 0324.22006
[24] Taylor M.E.:
Noncommutative Harmonis Analysis. Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, Rhode Island, 1986.
MR 0852988
[26] Wallach N.R.:
Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, 19, Marcel Dekker, New-York, 1973.
MR 0498996 |
Zbl 0265.22022