Previous |  Up |  Next

Article

Keywords:
semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization
Summary:
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
References:
[1] Ali S.T., Engliš M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17 (2005), no. 4, 391–490. DOI 10.1142/S0129055X05002376 | MR 2151954
[2] Berezin F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175. MR 0395610 | Zbl 0976.83531
[3] Cahen B.: Deformation program for principal series representations. Lett. Math. Phys. 36 (1996), 65–75. DOI 10.1007/BF00403252 | MR 1371298 | Zbl 0843.22020
[4] Cahen B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803–806. DOI 10.1016/S0764-4442(97)80063-8 | MR 1483721 | Zbl 0883.22016
[5] Cahen B.: Contractions of $SU(1,n)$ and $SU(n+1)$ via Berezin quantization. J. Anal. Math. 97 (2005), 83–102. DOI 10.1007/BF02807403 | MR 2274974
[6] Cahen B.: Weyl quantization for semidirect products. Differential Geom. Appl. 25 (2007), 177–190. DOI 10.1016/j.difgeo.2006.08.005 | MR 2311733 | Zbl 1117.81087
[7] Cahen B.: Weyl quantization for principal series. Beiträge Algebra Geom. 48 (2007), no. 1, 175–190. MR 2326408 | Zbl 1134.22010
[8] Cahen B.: Contraction of compact semisimple Lie groups via Berezin quantization. Illinois J. Math. 53 (2009), no. 1, 265–288. MR 2584946 | Zbl 1185.22008
[9] Cahen B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310. MR 2572131 | Zbl 1185.22007
[10] Cahen B.: Weyl quantization for the semi-direct product of a compact Lie group and a vector space. Comment. Math. Univ. Carolin. 50 (2009), no. 3, 325–347. MR 2573408
[11] B. Cahen: A contraction of the principal series by Berezin-Weyl quantization. Univ. Metz, preprint, 2010. MR 2682458
[12] Cahen M., Gutt S., Rawnsley J.: Quantization on Kähler manifolds I. Geometric interpretation of Berezin quantization. J. Geom. Phys. 7 (1990), 45–62. DOI 10.1016/0393-0440(90)90019-Y | MR 1094730
[13] Cotton P., Dooley A.H.: Contraction of an adapted functional calculus. J. Lie Theory 7 (1997), 147–164. MR 1473162 | Zbl 0882.22015
[14] Dooley A.H., Rice J.W.: On contractions of semisimple Lie groups. Trans. Amer. Math. Soc. 289 (1985), 185–202. DOI 10.1090/S0002-9947-1985-0779059-4 | MR 0779059 | Zbl 0546.22017
[15] Folland B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, Princeton, 1989. MR 0983366 | Zbl 0682.43001
[16] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. MR 1834454 | Zbl 0993.53002
[17] Hörmander L.: The Analysis of Linear Partial Differential Operators. Vol. 3, Section 18.5, Springer, Berlin, Heidelberg, New-York, 1985.
[18] Kirillov A.A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR 2069175
[19] Knapp A.W.: Representation Theory of Semisimple Groups. An Overview Based on Examples. Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. MR 0855239 | Zbl 0993.22001
[20] B. Kostant: Quantization and unitary representations. in Modern Analysis and Applications, Lecture Notes in Mathematics, 170, Springer, Berlin, Heidelberg, New-York, 1970, pp. 87–207. DOI 10.1007/BFb0079068 | MR 0294568 | Zbl 0249.53016
[21] Mackey G.: On the analogy between semisimple Lie groups and certain related semi-direct product groups. in Lie Groups and their Representations, I.M. Gelfand Ed., Hilger, London, 1975. MR 0409726 | Zbl 0324.22006
[22] Rawnsley J.H.: Representations of a semi direct product by quantization. Math. Proc. Camb. Phil. Soc. 78 (1975), 345–350. DOI 10.1017/S0305004100051793 | MR 0387499 | Zbl 0313.22014
[23] Simms D.J.: Lie Groups and Quantum Mechanics. Lecture Notes in Mathematics, 52, Springer, Berlin, Heidelberg, New-York, 1968. DOI 10.1007/BFb0069914 | MR 0232579 | Zbl 0161.24002
[24] Taylor M.E.: Noncommutative Harmonis Analysis. Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, Rhode Island, 1986. MR 0852988
[25] Voros A.: An algebra of pseudo differential operators and the asymptotics of quantum mechanics. J. Funct. Anal. 29 (1978), 104–132. DOI 10.1016/0022-1236(78)90049-6 | MR 0496088
[26] Wallach N.R.: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, 19, Marcel Dekker, New-York, 1973. MR 0498996 | Zbl 0265.22022
[27] Wildberger N.J.: On the Fourier transform of a compact semisimple Lie group. J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. DOI 10.1017/S1446788700034741 | MR 1250994 | Zbl 0842.22015
Partner of
EuDML logo