[1] Bernardi C., Chacón Rebollo T., Gómez Mármol M., Lewandowski R., Murat F.:
A model for two coupled turbulent fluids, III. Numerical approximation by finite elements. Numer. Math. 98 (2004), no. 1, 33–66.
DOI 10.1007/s00211-003-0490-9 |
MR 2076053
[2] Bernardi C., Chacón Rebollo T., Hecht F., Lewandowski R.:
Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes equations. Math. Models Methods Appl. Sci. 19 (2009), no. 7, 1139–1183.
DOI 10.1142/S0218202509003747 |
MR 2553180
[3] Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F.:
A model for two coupled turbulent fluids, I. Analysis of the system. Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, pp. 69–102.
DOI 10.1016/S0168-2024(02)80006-6 |
MR 1935990
[4] Bernardi C., Chacón Rebollo T., Lewandowski R., Murat F.:
A model for two coupled turbulent fluids, II. Numerical analysis of a spectral discretization. SIAM J. Numer. Anal. 40 (2002), no. 6, 2368–2394 (electronic) (2003).
DOI 10.1137/S0036142901385829 |
MR 1974191
[7] Bulíček M., Málek J., Rajagopal K.R.:
Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries. SIAM J. Math. Anal.41 (2009), no. 2, 665–707.
DOI 10.1137/07069540X |
MR 2515781
[8] Bulíček M., Feireisl E., Málek J.:
A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal. Real World Appl. 10 (2009), no. 2, 992–1015.
MR 2474275
[11] Chacon T., Pironneau O.:
On the mathematical foundations of the $k$-$\epsilon$ turbulent model. Vistas in Applied Mathematics, Transl. Ser. Math. Engrg., Optimization Software, New York, 1986, pp. 44–56.
MR 0859923 |
Zbl 0618.76049
[12] Chácon Rebollo T.:
Oscillations due to the transport of microstructures. SIAM J. Appl. Math. 48 (1988), no. 5, 1128–1146.
DOI 10.1137/0148067 |
MR 0960475
[13] Feireisl E., Málek J.:
On the Navier-Stokes equations with temperature-dependent transport coefficients. Differ. Equ. Nonlinear Mech. 2006, Art. ID 90616, 14 pp. (electronic).
MR 2233755
[15] Kolmogorov A.N.: Equations of turbulent motion in an incompressible fluid. Izv. Akad. Nauk SSSR, Seria fizicheska 6 (1942), no. 1–2, 56–58.
[16] Kolmogorov A.N.:
Selected works of A.N. Kolmogorov, Vol. I. Mathematics and Mechanics. With commentaries by V.I. Arnol'd, V.A. Skvortsov, P.L. Ul'yanov et al., translated from the Russian original by V.M. Volosov. Edited and with a preface, foreword and brief biography by V.M. Tikhomirov. Mathematics and its Applications (Soviet Series), 25, Kluwer Academic Publishers Group, Dordrecht, 1991.
MR 1175399
[17] Launder B.E., Spalding D.B.:
Mathematical Models of Turbulence. Academic Press, 1972.
Zbl 0288.76027
[19] Lewandowski R.:
Les équations de Stokes et de Navier-Stokes couplées avec l'équation de l'énergie cinétique turbulente. C.R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 12, 1097–1102.
MR 1282351 |
Zbl 0806.35138
[20] Lewandowski R.: Analyse Mathématique et Océanographie. Masson, 1997.
[23] Lions P.L.:
Mathematical Topics in Fluid Mechanics, Vol. 1. Oxford Lecture Series in Mathematics and its Applications, 3, The Clarendon Press, Oxford University Press, New York, 1996.
MR 1422251 |
Zbl 0866.76002
[24] Málek J., Nečas J., Rokyta M., Růžička M.:
Weak and measure-valued solutions to evolutionary PDEs. Chapman & Hall, London, 1996.
MR 1409366
[26] Mohammadi B., Pironneau O.:
Analysis of the $k$-epsilon turbulence model. RAM: Research in Applied Mathematics, Masson, Paris, 1994.
MR 1296252
[27] Naumann J.:
On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids. Math. Methods Appl. Sci. 29 (2006), no. 16, 1883–1906.
DOI 10.1002/mma.754 |
MR 2259989 |
Zbl 1106.76016
[29] Simon J.:
Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. (4) 146 (1987), 65–96.
MR 0916688
[30] Spalding D.B.:
Kolmogorov's two-equation model of turbulence. Turbulence and stochastic processes: Kolmogorov's ideas 50 years on. Proc. Roy. Soc. London Ser. A 434 (1991), no. 1890, 211–216.
MR 1124931