Previous |  Up |  Next

Article

Keywords:
Dirichlet problem; upper-Carathéodory differential inclusions; bounding functions
Summary:
In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.
References:
[1] Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications, vol. 1 Kluwer, Dordrecht, 2003. MR 1998968 | Zbl 1029.55002
[2] Andres, J., Pavlačková, M.: Asymptotic boundary value problems for second-order differential systems. Nonlin. Anal. 71, 5–6 (2009), 1462–1473. DOI 10.1016/j.na.2008.12.013 | MR 2524361 | Zbl 1182.34038
[3] Appell, J., De Pascale, E., Thái, N. H., Zabreiko, P. P.: Multi-Valued Superpositions. Diss. Math., Vol. 345, PWN, Warsaw, 1995. MR 1354934
[4] De Blasi, F. S., Pianigiani, G.: Solution sets of boundary value problems for nonconvex differential inclusions. Topol. Methods Nonlinear Anal. 1 (1993), 303–314. MR 1233098 | Zbl 0785.34018
[5] Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin, 1992. MR 1189795 | Zbl 0820.34009
[6] Erbe, L., Krawcewicz, W.: Nonlinear boundary value problems for differential inclusions $y^{\prime \prime } \in F(t, y, y^{\prime })$. Ann. Pol. Math. 54 (1991), 195–226. MR 1114171 | Zbl 0731.34078
[7] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin, 1977. MR 0637067 | Zbl 0339.47031
[8] Halidias, N., Papageorgiou, N. S.: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $R^n$. J. Diff. Equations 147 (1998), 123–154. DOI 10.1006/jdeq.1998.3439 | MR 1632661
[9] Halidias, N., Papageorgiou, N. S.: Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions. J. Comput. Appl. Math. 113 (2000), 51–64. DOI 10.1016/S0377-0427(99)00243-5 | MR 1735812 | Zbl 0941.34008
[10] Kožušníková, M.: A bounding functions approach to multivalued Dirichlet problem. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 55 (2007), 1–19. MR 2458792 | Zbl 1202.34036
[11] Kyritsi, S., Matzakos, N., Papageorgiou, N. S.: Nonlinear boundary value problems for second order differential inclusions. Czechoslovak Math. J. 55 (2005), 545–579. DOI 10.1007/s10587-005-0046-5 | MR 2153083 | Zbl 1081.34020
[12] Miklaszewski, D.: The two-point problem for nonlinear ordinary differential equations and differential inclusions. Univ. Iagell Acta Math. 36 (1998), 127–132. MR 1661330 | Zbl 1002.34011
[13] Palmucci, M., Papalini, F.: Periodic and boundary value problems for second order differential inclusions. J. of Applied Math. and Stoch. Anal. 14 (2001), 161–182. DOI 10.1155/S1048953301000120 | MR 1838344 | Zbl 1014.34009
[14] Zuev, A. V.: On the Dirichlet problem for a second-order ordinary differential equation with discontinuous right-hand side. Diff. Urav. 42 (2006), 320–326. MR 2290542 | Zbl 1133.34309
Partner of
EuDML logo