[1] Andres, J., Górniewicz, L.:
Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications, vol. 1 Kluwer, Dordrecht, 2003.
MR 1998968 |
Zbl 1029.55002
[3] Appell, J., De Pascale, E., Thái, N. H., Zabreiko, P. P.:
Multi-Valued Superpositions. Diss. Math., Vol. 345, PWN, Warsaw, 1995.
MR 1354934
[4] De Blasi, F. S., Pianigiani, G.:
Solution sets of boundary value problems for nonconvex differential inclusions. Topol. Methods Nonlinear Anal. 1 (1993), 303–314.
MR 1233098 |
Zbl 0785.34018
[6] Erbe, L., Krawcewicz, W.:
Nonlinear boundary value problems for differential inclusions $y^{\prime \prime } \in F(t, y, y^{\prime })$. Ann. Pol. Math. 54 (1991), 195–226.
MR 1114171 |
Zbl 0731.34078
[7] Gaines, R., Mawhin, J.:
Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin, 1977.
MR 0637067 |
Zbl 0339.47031
[8] Halidias, N., Papageorgiou, N. S.:
Existence and relaxation results for nonlinear second order multivalued boundary value problems in $R^n$. J. Diff. Equations 147 (1998), 123–154.
DOI 10.1006/jdeq.1998.3439 |
MR 1632661
[10] Kožušníková, M.:
A bounding functions approach to multivalued Dirichlet problem. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 55 (2007), 1–19.
MR 2458792 |
Zbl 1202.34036
[12] Miklaszewski, D.:
The two-point problem for nonlinear ordinary differential equations and differential inclusions. Univ. Iagell Acta Math. 36 (1998), 127–132.
MR 1661330 |
Zbl 1002.34011
[14] Zuev, A. V.:
On the Dirichlet problem for a second-order ordinary differential equation with discontinuous right-hand side. Diff. Urav. 42 (2006), 320–326.
MR 2290542 |
Zbl 1133.34309