[1] Belousov, V. D.: Transitive distributive quasigroups. Ukr. Mat. Zhur 10, 1 (1958), 13–22.
[2] Belousov, V. D.:
Foundations of the theory of quasigroups and loops. Nauka, Moscow, 1967, (in Russian).
MR 0218483
[4] Denecke., K., Wismath, Sh. L.:
Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC, 2002.
MR 1887177 |
Zbl 0993.08001
[5] Duplák, J.:
On some permutations of a medial quasigroup. Mat. Čas. 24 (1974), 315–324, (in Russian).
MR 0384971
[6] Duplák, J.: On some properties of transitive quasigroups. Zborník Ped. fak. Univ. Šafárika 1 (1976), 29–35, (in Slovak).
[9] Havel, V. J., Vanžurová, A.: Medial Quasigroups and Geometry. Palacky University Press, Olomouc, 2006.
[11] Lindner, C. C., Rodger, C. A.:
Design Theory. CRC Press, London, New York, Washington, 1997.
Zbl 0926.68090
[12] Ježek, J., Kepka, T.:
Medial Groupoids. Academia, Praha, 1983.
MR 0734873
[13] Kárteszi, F.:
Introduction to Finite Geometries. Budapest, 1976.
MR 0423175
[15] Pflugfelder, H. O.:
Quasigroups and Loops, Introduction. Heldermann Verlag, Berlin, 1990.
MR 1125767 |
Zbl 0715.20043
[16] Pukharev, N. K.: On $A^k_n$-algebras and finite regular planes. Sib. Mat. Zhur. 6, 4 (1965), 892–899, (in Russian).
[17] Pukharev, N. K.: On construction of $A^k_n$-algebras. Sib. Mat. Zhur. 7, 3 (1966), 724–727, (in Russian).
[18] Pukharev, N. K.:
Geometric questions of some medial quasigroups. Sib. Mat. Zhur. 9, 4 (1968), 891–897, (in Russian).
MR 0238170
[19] Pukharev, N. K.:
Some properties of groupoids and quasigroups connected with balanced incomplete block schemes. Quasigroups and Latine squares, Mat. Issl., Kishinev 71 (1983), 77–85, (in Russian).
MR 0699124
[20] Romanowska, A., Smith, J. D. H.:
Modal Theory, An Algebraic Approach to Order, Geometry, and Convexity. Heldermann Verlag, Berlin, 1985.
MR 0788695 |
Zbl 0553.08001
[21] Romanowska, A., Smith, J. D. H.:
Modes. World Scientific, New Jersey, London, Singapore, Hong Kong, 2002.
MR 1932199 |
Zbl 1012.08001
[22] Szamkolowicz, L.:
On the problem of existence of finite regular planes. Colloq. Math. 9 (1962), 245–250.
MR 0142047 |
Zbl 0106.14302
[26] Szmielew, W.:
From Affine to Euclidean Geometry. Polish Scientific Publishers & D. Reidel Publishing Company, Warszawa & Dordrecht–Boston–London, 1983.
MR 0720548 |
Zbl 0516.51001