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Abstract

In this paper, the existence and the localization result will be proven
for vector Dirichlet problem with an upper-Carathéodory right-hand side.
The result will be obtained by combining the continuation principle with
bound sets technique.
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1 Introduction

Given an upper-Carathéodory multivalued mapping F : [0, T ]×R
n×R

n � R
n,

the existence and the localization result for multivalued vector Dirichlet problem

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ], (1)

x(T ) = x(0) = 0 (2)

will be proven in this paper.
By a solution of problem (1), (2) we shall mean a function x : [0, T ] → R

n

with absolutely continuous first derivative satisfying (1), (2).
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96 Martina PAVLAČKOVÁ

Vector Dirichlet problems for differential equations or inclusions were stud-
ied by many authors (see, e.g., [4, 6, 8, 9, 10, 11, 12, 13, 14]). In mentioned
papers, various methods (like an upper and lower solutions technique, method
of shift along trajectories or tube solution method) were applied for obtaining
the existence results. In this paper, not only the existence but also the local-
ization results are obtained by means of bound sets technique. This method
was introduced in the single-valued case by Gaines and Mawhin in [7] for ob-
taining the existence of solutions of the first and the second-order differential
equations. Bound sets technique was recently, among others, applied for mul-
tivalued Dirichlet problem with globally upper semi-continuous right-hand side
(shortly, r.h.s.) in [10].
In this paper, we employ the bound sets technique for the Dirichlet problem

(1), (2) in the more general case when the r.h.s. is an upper-Carathéodory
multivalued mapping. The existence and localization result (cf. Theorem 4.1
below) is obtained by combining the bound sets approach with the continuation
principle developed in [2].
The paper is organized as follows. In the second section, suitable definitions

and statements which will be used in the sequel are recalled. Section 3 is devoted
to studying of bound sets and Liapunov-like bounding functions for Dirichlet
problems. At first, the C1-bounding functions with locally Lipschitzian gra-
dients are considered. Consequently, it is shown how conditions ensuring the
existence of bound set change in case of C2-bounding functions. In Section 4,
the bound sets approach is combined with the continuation principle (developed
in [2]) and the existence and localization result is obtained in this way for the
Dirichlet problem (1), (2). Finally, an illustrating example is also supplied.

2 Preliminaries

Let us start with notations we use in the paper. If (X, d) is a metric space
and A ⊂ X, by A, IntA and ∂A, we mean the closure, the interior and the
boundary of A, respectively. For a subset A ⊂ X and ε > 0, we define the set
Nε(A) := {x ∈ X

∣∣ ∃a ∈ A : d(x, a) < ε}, i.e. Nε(A) is an open neighborhood of
the set A in X.
For a given compact real interval J, we denote by C(J,Rn) (by C1(J,Rn))

the set of all functions x : J → R
n which are continuous (have continuous first

derivatives) on J . By AC1(J,Rn), we shall mean the set of all functions x : J →
R

n with absolutely continuous first derivatives on J .
We also need following definitions and notions from multivalued theory in

the sequel. Let Y be a metric space. We say that F is a multivalued mapping
from X to Y (written F : X � Y ) if, for every x ∈ X, a nonempty subset F (x)
of Y is given. We associate with F its graph ΓF , the subset of X × Y , defined
by

ΓF := {(x, y) ∈ X × Y
∣∣ y ∈ F (x)}.

A multivalued mapping F : X � Y is called upper semi-continuous (shortly,
u.s.c.) if, for each open set U ⊂ Y , the set {x ∈ X

∣∣ F (x) ⊂ U} is open in X.
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Let Y be a metric space and (Ω,U , μ) be a measurable space, i.e. a nonempty
set Ω equipped with a suitable σ-algebra U of its subsets and a countably addi-
tive measure μ on U . A multivalued mapping F : Ω � Y is called measurable
if {ω ∈ Ω

∣∣ F (ω) ⊂ V } ∈ U , for each open set V ⊂ Y .
We say that mapping F : J ×R

m � R
n, where J ⊂ R is a compact interval,

is an upper-Carathéodory mapping if the map F (·, x) : J � R
n is measurable,

for all x ∈ R
m, the map F (t, ·) : Rm � R

n is u.s.c., for almost all t ∈ J, and the
set F (t, x) is compact and convex, for all (t, x) ∈ J × R

m.
Let X ∩ Y �= ∅ and F : X � Y . We say that a point x ∈ X ∩ Y is a fixed

point of F if x ∈ F (x). The set of all fixed points of F is denoted by Fix(F ),
i.e.

Fix(F ) := {x ∈ X
∣∣ x ∈ F (x)}.

We employ the following selection result in the sequel.

Proposition 2.1 (cf., e.g., [3]) Let J ⊂ R be a compact interval and F : J ×
R

m � R
n be an upper-Carathéodory mapping satisfying |y| ≤ r(t)(1 + |x|), for

every (t, x) ∈ J×R
m, and every y ∈ F (t, x), where r : J → [0,∞) is an integrable

function. Then the composition F (t, q(t)) admits, for every q ∈ C(J,Rm), a
single-valued measurable selection.

In the sequel, we will also need the following slight modification of the con-
tinuation principle developed in [2] for problems on arbitrary, possibly non-
compact, intervals. The difference between the presented result and the one
in [2] consists in replacement of the non-compact interval by the compact one
which simplify the last, so called transversality, condition.

Proposition 2.2 (cf. [2, Theorem 3.1. and Remark 2.2.]) Let us consider the
b.v.p.

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],
x ∈ S,

}
(3)

where F : [0, T ] × R
n × R

n � R
n is an upper-Carathéodory mapping and S is

a subset of AC1([0, T ],Rn). Let H : [0, T ] × R
4n × [0, 1] � R

n be an upper-
Carathéodory mapping such that

H(t, c, d, c, d, 1) ⊂ F (t, c, d), for all (t, c, d) ∈ [0, T ]× R
2n. (4)

Assume that

(i) there exists a retract Q of C1([0, T ],Rn), with Q \ ∂Q �= ∅, and a closed
subset S1 of S such that the associated problem

ẍ(t) ∈ H(t, x(t), ẋ(t), q(t), q̇(t), λ), for a.a. t ∈ [0, T ],
x ∈ S1

}
(5)

has, for each (q, λ) ∈ Q× [0, 1], a non-empty, convex set of solutions,
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(ii) there exists a nonnegative, integrable function α : [0, T ] → R such that

|H(t, x(t), ẋ(t), q(t), q̇(t), λ)| ≤ α(t)(1 + |x(t)|+ |ẋ(t)|), a.e. in [0, T ],

for any (q, λ, x) ∈ ΓT, where T denotes the multivalued map which assigns
to any (q, λ) ∈ Q× [0, 1] the set of solutions of (5),

(iii) T(Q× {0}) ⊂ Q,

(iv) there exist a point t0 ∈ [0, T ] and constants M0 ≥ 0, M1 ≥ 0 such that
|x(t0)| ≤ M0 and |ẋ(t0)| ≤ M1, for any x ∈ T(Q× [0, 1]),

(v) the solution map T has no fixed points on the boundary ∂Q of Q, for every
(q, λ) ∈ Q× [0, 1].

Then the b.v.p. (3) has a solution in S1 ∩Q.

3 Bound sets theory for Dirichlet problem

The direct verification of transversality condition (v) in Proposition 2.2 is quite
complicated. Therefore, a Liapunov-like function V , usually called a bounding
function, which can guarantee this condition will be introduced now.
Hence, let K ⊂ R

n be a nonempty, open set with 0 ∈ K and let V : Rn → R

be a continuous function satisfying

(H1) V |∂K = 0,

(H2) V (x) ≤ 0, for all x ∈ K.

Definition 3.1 The set K is called a bound set for the Dirichlet problem (1),
(2) if every solution x of problem (1), (2) such that x(t) ∈ K, for each t ∈ [0, T ],
does not satisfy x(t∗) ∈ ∂K, for any t∗ ∈ [0, T ].

Remark 3.1 Let us note that the existence of a bound set K for the Dirichlet
problem (1), (2) does not guarantee the existence of a solution of problem (1),
(2). It only ensures that if there would exist a solution lying in K, then this
solution did not touch the boundary of K at any point, i.e. it lies in IntK.

At first, the sufficient conditions for the existence of a bound set for the
Dirichlet problem (1), (2) in the general case will be shown in Proposition 3.1
below. Afterwards, the regularity assumptions on the bounding function V will
be made more strict and the practically applicable version of Proposition 3.1
will be obtained (see Corollary 3.1 below).

Proposition 3.1 LetK ⊂ R
n be a nonempty open set with 0 ∈ K and F : [0, T ]×

R
n × R

n � R
n be an upper-Carathéodory multivalued mapping. Assume that

there exists a function V ∈ C1(Rn,R) with ∇V locally Lipschitzian and sat-
isfying conditions (H1) and (H2). Suppose, moreover, that there exists ε > 0



A bound sets technique for Dirichlet problem. . . 99

such that, for all x ∈ K ∩ Nε(∂K), t ∈ (0, T ) and v ∈ R
n, at least one of the

following conditions

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (6)

lim sup
h→0+

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (7)

holds, for all w ∈ F (t, x, v). Then K is a bound set for the Dirichlet problem
(1), (2).

Proof We assume, by a contradiction, that K is not a bound set for the
Dirichlet problem (1), (2), i.e. that there exist a solution x : [0, T ] → K of (1),
(2) and t∗ ∈ [0, T ] such that x(t∗) ∈ ∂K. The point t∗ must lie in (0, T ),
according to the boundary condition (2) and the fact that 0 ∈ K.
Since∇V is locally Lipschitzian, there exist a bounded open set U ⊂ R

n with
x(t∗) ∈ U and a constant L > 0 such that ∇V |U is Lipschitzian with constant
L. Let δ > 0 be such that x(t) ∈ U ∩Nε(∂K), for each t ∈ [t∗ − δ, t∗ + δ].
Let us define the function g : [0, T ] → R by the formula g(t) := V (x(t)).

According to the regularity properties of x and V , g ∈ C1([0, T ],R). Since
g(t∗) = 0 and g(t) ≤ 0, for all t ∈ [0, T ], the point t∗ is a local maximum
point for g and ġ(t∗) = 0. Moreover, there exist points t∗∗ ∈ (t∗ − δ, t∗),
t∗∗∗ ∈ (t∗, t∗ + δ) such that ġ(t∗∗) ≥ 0 and ġ(t∗∗∗) ≤ 0.
Since ġ(t) = 〈∇V (x(t)), ẋ(t)〉, where ∇V (x(t)) is locally Lipschitzian and

ẋ(t) is absolutely continuous on [t∗−δ, t∗+δ], g̈(t) exists, for a.a. t ∈ [t∗−δ, t∗+δ].
Consequently,

0 ≥ −ġ(t∗∗) = ġ(t∗)− ġ(t∗∗) =
∫ t∗

t∗∗
g̈(s) ds (8)

and

0 ≥ ġ(t∗∗∗) = ġ(t∗∗∗)− ġ(t∗) =
∫ t∗∗∗

t∗
g̈(s) ds. (9)

At first, let us assume that condition (6) holds and let t ∈ (t∗∗, t∗) be such
that g̈(t) and ẍ(t) exist. Then,

lim
h→0

ẋ(t+ h)− ẋ(t)

h
= ẍ(t),

and therefore there exists a function a(h), a(h) → 0 as h → 0, such that, for
each h,

ẋ(t+ h) = ẋ(t) + h[ẍ(t) + a(h)]. (10)

Moreover, since x ∈ C1([0, T ],Rn), there exists a function b(h), b(h) → 0 as
h → 0, such that, for each h,

x(t+ h) = x(t) + h[ẋ(t) + b(h)]. (11)
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Consequently, we obtain

g̈(t) = lim
h→0

ġ(t+ h)− ġ(t)

h
= lim sup

h→0−

ġ(t+ h)− ġ(t)

h

= lim sup
h→0−

〈∇V (x(t+ h)), ẋ(t+ h)〉 − 〈∇V (x(t)), ẋ(t)〉
h

= lim sup
h→0−

〈∇V (x(t) + h[ẋ(t) + b(h)]), ẋ(t) + h[ẍ(t) + a(h)]〉 − 〈∇V (x(t)), ẋ(t)〉
h

≥ lim sup
h→0−

〈∇V (x(t) + hẋ(t)), ẋ(t) + h[ẍ(t) + a(h)]〉 − 〈∇V (x(t)), ẋ(t)〉
h

−L · |b(h)| · |ẋ(t) + h[ẍ(t) + a(h)]|

= lim sup
h→0−

〈∇V (x(t) + hẋ(t)), ẋ(t) + hẍ(t)〉 − 〈∇V (x(t)), ẋ(t)〉
h

−L · |b(h)| · |ẋ(t) + h[ẍ(t) + a(h)]|+ 〈∇V (x(t) + hẋ(t)), a(h)〉 .
Since

〈∇V (x(t) + hẋ(t)), a(h)〉 − L · |b(h)| · |ẋ(t) + h[ẍ(t) + a(h)]| → 0 as h → 0

and since assumption (6) holds,

g̈(t) ≥ lim sup
h→0−

〈∇V (x(t) + hẋ(t)), ẋ(t) + hẍ(t)〉 − 〈∇V (x(t)), ẋ(t)〉
h

> 0,

which leads to a contradiction with the inequality (8).

Secondly, let us assume that condition (7) holds and let s ∈ (t∗, t∗∗∗) be such
that g̈(s) and ẍ(s) exist. Then it is possible to show, using the same procedure
as before, that, according to assumption (7),

g̈(s) ≥ lim sup
h→0+

〈∇V (x(s) + hẋ(s)), ẋ(s) + hẍ(s)〉 − 〈∇V (x(s)), ẋ(s)〉
h

> 0,

which leads to a contradiction with the inequality (9).
Therefore, we get the contradiction in case that at least one of conditions

(6), (7) hold which completes the proof. �

Definition 3.2 A function V : Rn → R from Proposition 3.1 satisfying con-
ditions (H1), (H2) and at least one of conditions (6), (7) is called a bounding
function for the set K relative to (1), (2).

Remark 3.2 It is obvious from the proof of Proposition 3.1 that the element
v ∈ R

n in (6), (7) plays the role of solution derivative. Thus, if there would
exist an integrable function α : [0, T ] → R such that |F (t, x(t), ẋ(t))| ≤ α(t), for
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a.a. t ∈ [0, T ] and all solutions x(·) of (1), (2), then conditions (6), (7) could be
weaken.
In fact, in such a case, it holds for an arbitrary solution x(·) of (1), (2) that

|ẋ(0)| ≤ ∫ T

0
α(t) dt (see part ad (iv) in the proof of Theorem 4.1 below), and so,

for a.a. t ∈ [0, T ],

|ẋ(t)− ẋ(0)| ≤
∫ t

0

|ẍ(s)| ds ≤
∫ t

0

α(s) ds.

Consequently,

|ẋ(t)| ≤ |ẋ(0)|+
∫ t

0

α(s) ds ≤ 2

∫ T

0

α(t) dt.

Therefore, if |F (t, x(t), ẋ(t))| ≤ α(t), for a.a. t ∈ [0, T ] and all solutions x(·)
of (1), (2), conditions (6), (7) change as follows:
There exists ε > 0 such that, for all x ∈ K ∩Nε(∂K), t ∈ (0, T ) and v ∈ R

n

with |v| ≤ 2
∫ T

0
α(t) dt, at least one of the following condition

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (12)

lim sup
h→0+

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (13)

holds, for all w ∈ F (t, x, v).

When the bounding function V is of class C2, both conditions (6) and (7)
can be rewritten in the same way in terms of gradients and Hessian matrices.

Corollary 3.1 Let K ⊂ R
n be a nonempty open set with 0 ∈ K and F : [0, T ]×

R
n × R

n � R
n be an upper-Carathéodory multivalued mapping. Assume that

there exists a function V ∈ C2(Rn,R) satisfying conditions (H1) and (H2).
Moreover, assume that there exists ε > 0 such that, for all x ∈ K ∩ Nε(∂K),
t ∈ (0, T ) and v ∈ R

n, condition

〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0 (14)

holds, for all w ∈ F (t, x, v). Then K is a bound set for the Dirichlet problem
(1), (2).

Proof The statement of Corollary 3.1 follows immediately from the fact that
if V ∈ C2(Rn,R), then, for all x ∈ K ∩ Nε(∂K), t ∈ (0, T ), v ∈ R

n and
w ∈ F (t, x, v),

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

= lim sup
h→0+

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

= 〈HV (x)v, v〉+ 〈∇V (x), w〉.
�
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Remark 3.3 The element v ∈ R
n in (14) plays again the role of the solution

derivative. Therefore, if the mapping F satisfies the condition specified in Re-
mark 3.2, it is sufficient to require condition (14) in Corollary 3.1 only for all
v ∈ R

n with |v| ≤ 2
∫ T

0
α(t) dt, and not for all v ∈ R

n.

4 The existence and localization result for Dirichlet
problem

In this section, we investigate the Dirichlet problem (1), (2) by combining the
continuation principle from Proposition 2.2 with bound sets results developed
in the previous section.
For this purpose, let us specify the general problem (3) as the Dirichlet

problem (1), (2). Moreover, let K ⊂ R
n be a nonempty, open, bounded set

with 0 ∈ K. If we define the set Q of candidate solutions from Proposition 2.2
by formula

Q := {q ∈ C1([0, T ],Rn)
∣∣ q(t) ∈ K, for all t ∈ [0, T ]} (15)

and the associated problem (5), for each (q, λ) ∈ Q× [0, 1], as follows

ẍ(t) ∈ λF (t, q(t), q̇(t)), for a.a. t ∈ [0, T ],
x(T ) = x(0) = 0,

}
(16)

then we will be able to clearly verify all conditions in Proposition 2.2.

Theorem 4.1 Let us consider the Dirichlet problem (1), (2), where F : [0, T ]×
R

n × R
n � R

n is an upper-Carathéodory multivalued mapping. Moreover,
assume that

(i) the closure K of the set K is a retract of Rn,

(ii) there exists a nonnegative, integrable function α : [0, T ] → R such that

|F (t, q(t), q̇(t))| ≤ α(t), a.e. in [0, T ],

for each q ∈ Q, where Q is defined by formula (15),

(iii) there exists a function V ∈ C1(Rn,R) with ∇V locally Lipschitzian and
satisfying conditions (H1) and (H2),

(iv) there exists ε > 0 such that, for all x ∈ K ∩Nε(∂K), t ∈ (0, T ), λ ∈ (0, 1)

and v ∈ R
n with |v| ≤ 2

∫ T

0
α(t) dt, at least one of the following conditions

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (17)

lim sup
h→0+

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (18)

holds, for all w ∈ λF (t, x, v).
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Then the Dirichlet problem (1), (2) has a solution x(·) such that x(t) ∈ K, for
all t ∈ [0, T ].

Proof We will check that all the assumptions of Proposition 2.2 are satisfied.
ad (i) Since K is, according to assumption (i), a retract of Rn, there exists

a continuous function φ : Rn → K satisfying φ(x) = x, for each x ∈ K. Let
us define a function φ̃ : C1([0, T ],Rn) → Q in the following way: for each x ∈
C1([0, T ],Rn), φ̃(x) = x̃, where x̃ : [0, T ] → K satisfies x̃(t) = φ(x(t)), for each
t ∈ [0, T ]. It follows from the definition of Q and the properties of φ that
φ̃(q) = q, for each q ∈ Q, and that φ̃ is continuous. Therefore, Q is a retract of
C1([0, T ],Rn), as required.
In order to prove that all associated problems have desired topological struc-

ture, let us specify, for each (q, λ) ∈ Q × [0, 1], the associated problem (5) as
the fully linearized problem (16). The homogeneous problem corresponding to
b.v.p. (16),

ẍ(t) = 0, for a.a. t ∈ [0, T ],
x(T ) = x(0) = 0,

}
(19)

has only the trivial solution. Moreover, for each (q, λ) ∈ Q × [0, 1], there
exists at least one solution x(·) of (16) given, for a.a. t ∈ [0, T ], by x(t) =∫ T

0
G(t, s)fq,λ(s) ds, where G is the Green function associated to the homoge-

neous problem (19) and fq,λ(·) is a measurable selection of λF (·, q(·), q̇(·)).*
Thus, for each (q, λ) ∈ Q× [0, 1], the set of solutions of (16) is nonempty.
The set of solutions of (16) is, for each (q, λ) ∈ Q × [0, 1]. also convex (cf.,

e.g., the proof of Theorem 4.1 in [2], for A(t) = B(t) ≡ 0, I = [0, T ] and the
closed, convex set S1 = {x(·) ∈ AC1([0, T ],Rn)

∣∣ x(0) = x(T ) = 0}).
Furthermore, since Q \ ∂Q is nonempty, condition (i) from Proposition 2.2

holds.

ad (ii) Condition (ii) in Proposition 2.2 is directly guaranteed by assump-
tion (ii).

ad (iii) The fulfillment of condition (iii) in Proposition 2.2 follows imme-
diately from the fact that, for λ = 0, all associated problems (for an arbi-
trary q ∈ Q) transform into the b.v.p. (19) which has only the trivial solution.
Therefore, since 0 ∈ K and Q is defined by formula (15), assumption (iii) in
Proposition 2.2 holds as well.

ad (iv) Let x(·) be a solution of the b.v.p. (16), for some (q, λ) ∈ Q× [0, 1].
From boundary condition x(0) = 0, it follows that |x(0)| = 0. Moreover, since
also x(T ) = 0, there exists a point ξ ∈ (0, T ) such that ẋ(ξ) = 0. Therefore,

|ẋ(0)| = |ẋ(ξ)− ẋ(0)| =
∣∣∣∣∣
∫ ξ

0

ẍ(t) dt

∣∣∣∣∣ ≤
∫ ξ

0

|ẍ(t)| dt ≤
∫ ξ

0

α(t) dt ≤
∫ T

0

α(t) dt.

Since α(·) is integrable, there exists a constant M such that
∫ T

0
α(t) dt ≤ M ,

and therefore, |ẋ(0)| ≤ M . Hence, condition (iv) in Proposition 2.2 is satisfied
with t0 = 0, M0 = 0 and M1 = M .
*The existence of the measurable selection fq,λ(·) is guaranteed by Proposition 2.1.
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ad (v) Let us assume that q∗ ∈ Q is, for some λ ∈ [0, 1], a solution of

q̈∗(t) ∈ λF (t, q∗(t), q̇∗(t)), for a.a. t ∈ [0, T ],
x(T ) = x(0) = 0,

}
(20)

i.e. a fixed point of solution mapping T defined in Proposition 2.2.
At first, let λ = 1. If q∗ is a fixed point of T(·, 1), the original problem (1),

(2) has a solution in Q, and we are done.
Secondly, let us investigate the case when λ = 0. Then problem (20) trans-

form into the b.v.p. (19) which has only the trivial solution. Therefore, for
λ = 0, it holds that q∗ ≡ 0 which lies in Int Q. Hence, if λ = 0, condition (v)
in Proposition 2.2 is satisfied.
Finally, let us assume that λ ∈ (0, 1). It was shown in [10] that if q∗(t) ∈ K,

for all t ∈ [0, T ], then q∗ ∈ Int Q. Thus, if q∗ : [0, T ] → K would lie in ∂Q, there
must exist a point t∗ ∈ (0, T ) such that q∗(t∗) ∈ ∂K. But then q∗ can not be a
solution of the Dirichlet problem (20), for any λ ∈ (0, 1), since hypotheses (i),
(iii) and (iv) guarantee that K is a bound set for the Dirichlet problem (20),
for all λ ∈ (0, 1].
Therefore, condition (v) from Proposition 2.2 is satisfied, for all λ ∈ [0, 1),

which completes the proof. �

Example 4.1 As an illustrating example, let us consider the single-valued
scalar Dirichlet problem with discontinuous right-hand side

ẍ = 5 · sgn(x(t)) + sin(ẋ(t) · x(t)) · sgn (t− 1
2

)
+ ln(x(t)2 + 2),
for a.a. t ∈ [0, 1],

x(1) = x(0) = 0.

⎫⎬
⎭ (21)

Because of discontinuity in sgn(x(t)), we can only consider Filippov solutions
of (21) which can be identified (see, e.g., [1, 5]) as Carathéodory solutions of
the following b.v.p. with upper-Carathéodory r.h.s.

ẍ ∈ 5 · Sgn(x(t)) + sin(ẋ(t) · x(t)) · sgn (t− 1
2

)
+ ln(x(t)2 + 2),
for a.a. t ∈ [0, 1],

x(1) = x(0) = 0,

⎫⎬
⎭ (22)

where

Sgn y :=

⎧⎨
⎩

−1, for y < 0,
[−1, 1], for y = 0,

1, for y > 0.

In order to apply Theorem 4.1, let us define sets K and Q in the following
way:

K := (−6, 6) (23)

and
Q :=

{
x ∈ C1([0, 1],R)

∣∣ x(t) ∈ K, for all t ∈ [0, 1]
}
.
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Moreover, let us consider, for each (q, λ) ∈ Q × [0, 1], the fully linearized asso-
ciated problem

ẍ ∈ λ
(
5 · Sgn(q(t)) + sin(q̇(t) · q(t)) · sgn (t− 1

2

)
+ ln(q(t)2 + 2)

)
,

a.e. in [0, 1],
x(1) = x(0) = 0.

⎫⎬
⎭ (24)

Let us now verify particular assumptions of Theorem 4.1.

ad (i) The set K defined by formula (23) is a nonempty, open and bounded
subset of R with 0 ∈ K. Moreover, since K is a convex set, it is a retract of R,
and so assumption (i) is valid.

ad (ii) The fulfilment of hypothesis (ii) follows immediately from the form
of right-hand side in (24) and the definition of Q.

ad (iii) Let us define the function V by formula

V (x) =
1

2

(
x2 − 36

)
.

Since V (x) = 0, for all x ∈ ∂K, and V (x) ≤ 0, for all x ∈ K, the function V
satisfies conditions (H1) and (H2). Moreover, for each x ∈ ∂K, ∇V (x) = x and
HV (x) = 1. Furthermore, since V ∈ C2(R,R), condition (iii) holds as well.

ad (iv) Let us set ε := 1. Then, for all x ∈ [−6,−5) ∪ (5, 6], t ∈ (0, 1),
λ ∈ (0, 1], v ∈ R and

w ∈ λ

(
5 · Sgn(x) + sin(v · x) · sgn

(
t− 1

2

)
+ ln(x2 + 2)

)
,

the following condition

〈HV (x)v, v〉+ 〈∇V (x), w〉 = v · v+x ·w ≥ λ(5 · |x|− |x|− |x| · ln(38)) > 0 (25)

holds. Thus, assumption (iv) of Theorem 4.1 is satisfied.
Therefore, all assumptions of Theorem 4.1 are satisfied, and hence, the

Dirichlet problem (22) admits a solution x(·) such that |x(t)| < 6, for all
t ∈ [0, 1]. This solution represents a Filippov solution of the original problem
(21).
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