Previous |  Up |  Next

Article

Keywords:
{\it Bloch} space; composition operator; essential norm; difference; compactness
Summary:
Let $\varphi $ and $\psi $ be holomorphic self-maps of the unit disk, and denote by $C_\varphi $, $C_\psi $ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators $C_\varphi -C_\psi $ from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.
References:
[1] Aron, R., Galindo, P., Lindsröm, M.: Connected components in the space of composition operators on $H^{\infty}$ functions of many variables. Int. Equ. Oper. Theory 45 (2003), 1-14. DOI 10.1007/BF02789591 | MR 1952340
[2] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Australian Math. Soc. 84 (2008), 9-20. DOI 10.1017/S144678870800013X | MR 2469264
[3] Cowen, C. C., MacCluer, B. D.: Composition operators on spaces of analytic functions. CRC Press, Boca Raton (1995). MR 1397026 | Zbl 0873.47017
[4] Cowen, C., Gallardo-Gutiérrez, E.: A new class of operators and a description of adjoints of composition operators. J. Funct. Anal. 238 (2006), 447-462. DOI 10.1016/j.jfa.2006.04.031 | MR 2253727
[5] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc. Abstract Appl. Anal. 2008 (2008), 1-10. MR 2466222 | Zbl 1160.32009
[6] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the Bloch space in the polydisc. Bull. Australian Math. Soc. 79 (2009), 465-471. DOI 10.1017/S0004972709000045 | MR 2505351 | Zbl 1166.47032
[7] Gallardo-Gutiérrez, E. A., González, M. J., Nieminen, P. J., Saksman, E.: On the connected component of compact composition operators on the Hardy space. Advances Math. 219 (2008), 986-1001. DOI 10.1016/j.aim.2008.06.005 | MR 2442059
[8] Gorkin, P., Mortini, R., Suarez, D.: Homotopic composition operators on $H^\infty(B^n)$, Function Spaces, Edwardsville, vol. IL, 177-188, 2002. Contemporary Mathematics, vol. 328, Americian Mathematical Society, Providence, RI, 2003. MR 1990399
[9] Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on $H^\infty$. Integral Equations Operator Theory 53 (2005), 509-526. DOI 10.1007/s00020-004-1337-1 | MR 2187435
[10] Hosokawa, T., Ohno, S.: Topological structures of the sets of composition operators on the Bloch spaces. J. Math. Anal. Appl. 314 (2006), 736-748. DOI 10.1016/j.jmaa.2005.04.080 | MR 2185263 | Zbl 1087.47029
[11] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces. J. Operator Theory 57 (2007), 229-242. MR 2328996 | Zbl 1174.47019
[12] Kriete, T., Moorhouse, J.: Linear relations in the Calkin algebra for composition operators. Transactions of the American Mathematical Society 359 (2007), 2915-2944. DOI 10.1090/S0002-9947-07-04166-9 | MR 2286063 | Zbl 1115.47023
[13] Lindström, M., Wolf, E.: Essential norm of the difference of weighted composition operators. Monatshefte für Mathematik 153 (2008), 133-143. DOI 10.1007/s00605-007-0493-1 | MR 2373366
[14] MacCluer, B. D.: Components in the space of composition operators. Integral Equations Operator Theory 12 (1989), 725-738. DOI 10.1007/BF01194560 | MR 1009027 | Zbl 0685.47027
[15] MacCluer, B., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on $H^\infty$. Int. Eq. Oper. Theory 40 (2001), 481-494. DOI 10.1007/BF01198142 | MR 1839472
[16] María, J., Vukoti'c, D.: Adjoints of composition operators on Hilbert spaces of analytic functions. J. Funct. Anal. 238 (2006), 298-312. DOI 10.1016/j.jfa.2006.04.024 | MR 2253017
[17] Montes-Rodríguez, A.: The essential norm of a composition operator on Bloch spaces. Pacific J. Math. 188 (1999), 339-351. DOI 10.2140/pjm.1999.188.339 | MR 1684196
[18] Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. DOI 10.1016/j.jfa.2004.01.012 | MR 2108359 | Zbl 1087.47032
[19] Nieminen, Pekka J.: Compact differences of composition operators on Bloch and Lipschitz spaces. Comput. Methods Function Theory 7 (2007), 325-344. DOI 10.1007/BF03321648 | MR 2376675 | Zbl 1146.47016
[20] Nieminen, P. J., Saksman, E.: On compactness of the difference of composition operators. J. Math. Anal. Appl. 298 (2004), 501-522. DOI 10.1016/j.jmaa.2004.05.024 | MR 2086972 | Zbl 1072.47021
[21] Ohno, S., Takagi, H.: Some properties of weighted composition operators on algebras of analytic functions. J. Nonlin. Convex Anal. 2 (2001), 369-380. MR 1874125 | Zbl 1006.47027
[22] Shapiro, J. H.: Composition Operators and Classical Function Theory. Springer Verlag, New York (1993). MR 1237406 | Zbl 0791.30033
[23] Shapiro, J. H., Sundberg, C.: Isolation amongst the composition operators. Pacific J. Math. 145 (1990), 117-152. DOI 10.2140/pjm.1990.145.117 | MR 1066401 | Zbl 0732.30027
[24] Toews, C.: Topological components of the set of composition operators on $H^{\infty}(B_N)$. Int. Equ. Oper. Theory 48 (2004), 265-280. DOI 10.1007/s00020-002-1180-1 | MR 2030531
[25] Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk. Results in Mathematics 51 (2008), 361-372. DOI 10.1007/s00025-007-0283-z | MR 2400173 | Zbl 1154.47018
[26] Zhou, Z. H., Chen, R. Y.: On the composition operators on the Bloch space of several complex variables. Science in China (Series A) 48 (2005), 392-399. MR 2156519
[27] Zhou, Z. H., Chen, R. Y.: Weighted composition operators from $F(p,q,s)$ to Bloch type spaces. Int. J. Math. 19 (2008), 899-926. DOI 10.1142/S0129167X08004984 | MR 2446507 | Zbl 1163.47021
[28] Zhou, Z. H., Liu, Y.: The essential norms of composition operators between generalized Bloch spaces in the polydisk and its applications. J. Inequal. Appl. 2006 (2006), 1-22. DOI 10.1155/JIA/2006/90742 | MR 2270308
[29] Zhou, Z. H., Shi, J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Michigan Math. J. 50 (2002), 381-405. DOI 10.1307/mmj/1028575740 | MR 1914071 | Zbl 1044.47021
[30] Zhou, Z. H., Shi, J. H.: Compact composition operators on the Bloch space in polydiscs. Science in China (Series A) 44 (2001), 286-291. DOI 10.1007/BF02878708 | MR 1828751 | Zbl 1024.47010
Partner of
EuDML logo