Article
Keywords:
Banach space; Grothendieck property; tensor product
Summary:
Let $X$ be a Banach space with the Grothendieck property, $Y$ a reflexive Banach space, and let $X\check{\otimes}_{\varepsilon} Y$ be the injective tensor product of $X$ and $Y$. \item {(a)} If either $X^{\ast \ast }$ or $Y$ has the approximation property and each continuous linear operator from $X^\ast $ to $Y$ is compact, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property. \item {(b)} In addition, if $Y$ has an unconditional finite dimensional decomposition, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property if and only if each continuous linear operator from $X^\ast $ to $Y$ is compact.
References:
[1] Bu, Q., Emmanuele, G.:
The projective and injective tensor products of $L^p[0,1]$ and $X$ being Grothendieck spaces. Rocky Mt. J. Math. 35 (2005), 713-726.
DOI 10.1216/rmjm/1181069704 |
MR 2150306
[2] Defant, A., Floret, K.:
Tensor Norms and Operator Ideals. North-Holland Amsterdam (1993).
MR 1209438 |
Zbl 0774.46018
[3] Diestel, J., Uhl, J. J.:
Vector Measures. Mathematical Surveys No. 15. American Mathematical Society (AMS) Providence (1977).
MR 0453964
[4] Dunford, N., Schwartz, J. T.:
Linear Operators. Part I: General Theory. John Wiley & Sons New York (1988).
MR 1009162 |
Zbl 0635.47001
[6] Grothendieck, A.:
Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955), French.
MR 0075539 |
Zbl 0123.30301
[9] Lindenstrauss, J., Tzafriri, L.:
Classical Banach Spaces I. Sequence Spaces. Springer Berlin-Heidelberg-London (1977).
MR 0500056 |
Zbl 0362.46013