[1] Allan, G. R.:
Power-bounded elements in a Banach algebra and a theorem of Gelfand. In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12.
MR 1021992 |
Zbl 0703.46029
[2] Allan, G. R.:
Power-bounded elements and radical Banach algebras. In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16.
MR 1456997 |
Zbl 0884.47003
[3] Batty, C. J. K.:
Asymptotic behaviour of semigroups of operators. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52.
MR 1285599 |
Zbl 0818.47034
[4] Chill, R., Tomilov, Y.:
Stability of operator semigroups: ideas and results. In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109.
MR 2336713 |
Zbl 1136.47026
[5] Esterle, J.:
Quasimultipliers, representation of $H^\infty$, and the closed ideal problem for commutative Banach algebras. Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162.
DOI 10.1007/BFb0064548 |
MR 0697579
[6] Halmos, P.:
Hilbert Space Problem Book. Grad. Texts in Math. Mir Moskau (1970).
MR 0268689
[8] Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J.:
Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator. Proc. London Math. Soc. 91 (2005), 761-788.
MR 2180462
[10] Szegö, G.:
Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23. Amer. Math. Soc. Providence (1975).
MR 0310533
[13] Zemánek, J.:
On the Gelfand-Hille theorems. In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385.
MR 1285622