Previous |  Up |  Next

Article

Keywords:
$t$-tough graph; Laplacian matrix; adjacent matrix; eigenvalues
Summary:
We give some algebraic conditions for $t$-tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.
References:
[1] Brouwer, A. E.: Toughness and spectrum of a graph. Linear Algebra Appl. 226-228 (1995), 267-271. MR 1344566 | Zbl 0833.05048
[2] Brouwer, A. E., Haemers, W. H.: Eigenvalues and perfect matchings. Linear Algebra Appl. 395 (2005), 155-162. MR 2112881 | Zbl 1056.05097
[3] Chvátal, V.: New directions in Hamiltonian graph theory in New Directions in the Theory of Graphs. F. Harary Academic Press, New York (1973), 65-95. MR 0357221
[4] Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 306 (2006), 910-917. DOI 10.1016/j.disc.2006.03.011 | MR 0316301
[5] Enomoto, H., Jackson, B., Katerinis, P.: Toughness and the existence of $k$-factors. Journal of Graph Theory 9 (1985), 87-95. DOI 10.1002/jgt.3190090106 | MR 0785651 | Zbl 0598.05054
[6] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. MR 1344588 | Zbl 0831.05044
[7] Jung, H. A.: Note on Hamiltonian graphs, in Recent Advances in Graph Theory. M. Fiedler Academia, Prague (1975), 315-321. MR 0392692
[8] Mohar, B.: A domain monotonicity theorem for graphs and hamiltonicity. Discrete Appl. Math. 36 (1992), 169-177. DOI 10.1016/0166-218X(92)90230-8 | MR 1165833 | Zbl 0765.05071
[9] Heuvel, J. Vanden: Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730. MR 1344594
Partner of
EuDML logo