Article
Keywords:
$t$-tough graph; Laplacian matrix; adjacent matrix; eigenvalues
Summary:
We give some algebraic conditions for $t$-tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.
References:
[1] Brouwer, A. E.:
Toughness and spectrum of a graph. Linear Algebra Appl. 226-228 (1995), 267-271.
MR 1344566 |
Zbl 0833.05048
[2] Brouwer, A. E., Haemers, W. H.:
Eigenvalues and perfect matchings. Linear Algebra Appl. 395 (2005), 155-162.
MR 2112881 |
Zbl 1056.05097
[3] Chvátal, V.:
New directions in Hamiltonian graph theory in New Directions in the Theory of Graphs. F. Harary Academic Press, New York (1973), 65-95.
MR 0357221
[6] Haemers, W. H.:
Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616.
MR 1344588 |
Zbl 0831.05044
[7] Jung, H. A.:
Note on Hamiltonian graphs, in Recent Advances in Graph Theory. M. Fiedler Academia, Prague (1975), 315-321.
MR 0392692
[9] Heuvel, J. Vanden:
Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730.
MR 1344594