Previous |  Up |  Next

Article

Keywords:
variable exponent; weighted spaces; non doubling measures
Summary:
In the context of variable exponent Lebesgue spaces equipped with a lower Ahlfors measure we obtain weighted norm inequalities over bounded domains for the centered fractional maximal function and the fractional integral operator.
References:
[1] Almeida, A., Samko, S.: Fractional and hypersingular operators in variable exponent spaces on metric measure spaces. Mediterr. J. Math. 6 (2009), 215-232. DOI 10.1007/s00009-009-0006-7 | MR 2516251 | Zbl 1182.43011
[2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. DOI 10.4171/RMI/511 | MR 2414490
[3] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. MR 1976842
[4] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-254. MR 2057643
[5] Cuerva, J. García, Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50 (2001), 1241-1280. MR 1871355
[6] Harjulehto, P., Hästö, P., Latvala, V.: Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), 591-609. DOI 10.1007/s00209-006-0960-8 | MR 2244368
[7] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator. Real Anal. Exch. 30 (2004/2005), 87-104. MR 2126796
[8] Kokilashvili, V., Samko, S.: Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoam. 20 (2004), 493-515. DOI 10.4171/RMI/398 | MR 2073129
[9] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41(116) (1991), 592-618. MR 1134951
[10] Musielak, J.: Orlicz spaces and Modular spaces. Lecture Notes in Math. Vol. 1034. Springer Berlin (1983). MR 0724434
[11] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192 (1974), 261-274. DOI 10.1090/S0002-9947-1974-0340523-6 | MR 0340523 | Zbl 0289.26010
[12] Pick, L., Růžička, M.: An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 4 (2001), 369-372. DOI 10.1016/S0723-0869(01)80023-2 | MR 1876258
[13] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math. Vol. 1748. Springer Berlin (2000). DOI 10.1007/BFb0104030 | MR 1810360
[14] Samko, S.: Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces with variable exponent. Fract. Calc. Appl. Anal. 6 (2003), 421-440. MR 2044308 | Zbl 1093.46015
[15] Welland, G. V.: Weighted norm inequalities for fractional integrals. Proc. Am. Math. Soc. 51 (1975), 143-148. DOI 10.1090/S0002-9939-1975-0369641-X | MR 0369641 | Zbl 0306.26007
Partner of
EuDML logo