Article
Keywords:
abstract integration; extension of integral; Kurzweil-Henstock integration
Summary:
This work is a continuation of the paper (Š. Schwabik: General integration and extensions I, Czechoslovak Math.\ J. 60 (2010), 961--981). Two new general extensions are introduced and studied in the class $\frak T$ of general integrals. The new extensions lead to approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition of the Denjoy's special integral by the method of successive approximation, Math.\ Jap. 41 (1995), 217--230).
Related articles:
References:
[3] Gordon, R. A.:
The Integrals of Lebesgue, Denjoy, Perron and Henstock. American Mathematical Society Providence (1994).
MR 1288751 |
Zbl 0807.26004
[5] Kurzweil, J.:
Nichtabsolut konvergente Integrale. BSB B. G. Teubner Verlagsgesellschaft Leipzig (1980).
MR 0597703 |
Zbl 0441.28001
[6] Lee, P.-Y.:
Lanzhou Lectures on Henstock Integration. World Scientific Singapore (1989).
MR 1050957 |
Zbl 0699.26004
[7] Lee, P.-Y., Výborný, R.:
The Integral; An Easy Approach after Kurzweil and Henstock. Cambridge Univ. Press Cambridge (2000).
MR 1756319
[8] Nakanishi, S.:
A new definition of the Denjoy's special integral by the method of successive approximation. Math. Jap. 41 (1995), 217-230.
MR 1317766 |
Zbl 0932.26007
[9] Saks, S.:
Theory of the Integral. Hafner New York (1937).
Zbl 0017.30004